篇1:初一數(shù)學(xué)下冊知識點(diǎn)總結(jié)
相交線
對頂角相等。
過一點(diǎn)有且只有一條直線與已知直線垂直。
連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短(簡單說成:垂線段最短)。
平行線
經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
1、直線平行的條件
兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么兩直線平行。
2、平行線的性質(zhì)
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內(nèi)錯角相等。
兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。
二元一次方程組
方程中含有兩個未知數(shù)(x和y),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程。
把兩個二元一次方程合在一起,就組成了一個二元一次方程組。
使二元一次方程兩邊的值相等的兩個未知數(shù)的值,叫做二元一次方程的解。
二元一次方程組的兩個方程的公共解,叫做二元一次方程組的解。
消元
將未知數(shù)的個數(shù)由多化少、逐一解決的’想法,叫做消元思想。
不等式
用小于號或大于號表示大小關(guān)系的式子,叫做不等式。
使不等式成立的未知數(shù)的值叫做不等式的解。
能使不等式成立的x的取值范圍,叫做不等式的解的集合,簡稱解集。
不等式的性質(zhì)
不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變。
不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變。
不等式兩邊乘(或除以)同一個負(fù)數(shù),不等號的方向改變。
篇2:初一下冊數(shù)學(xué)知識點(diǎn)總結(jié)
多項(xiàng)式除以單項(xiàng)式
一、單項(xiàng)式
1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項(xiàng)式。
2、單項(xiàng)式的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù)。
3、單項(xiàng)式中所有字母的指數(shù)和叫做單項(xiàng)式的次數(shù)。
4、單獨(dú)一個數(shù)或一個字母也是單項(xiàng)式。
5、只含有字母因式的單項(xiàng)式的系數(shù)是1或―1。
6、單獨(dú)的一個數(shù)字是單項(xiàng)式,它的系數(shù)是它本身。
7、單獨(dú)的一個非零常數(shù)的次數(shù)是0。
8、單項(xiàng)式中只能含有乘法或乘方運(yùn)算,而不能含有加、減等其他運(yùn)算。
9、單項(xiàng)式的系數(shù)包括它前面的符號。
10、單項(xiàng)式的系數(shù)是帶分?jǐn)?shù)時,應(yīng)化成假分?jǐn)?shù)。
11、單項(xiàng)式的系數(shù)是1或―1時,通常省略數(shù)字“1”。
12、單項(xiàng)式的次數(shù)僅與字母有關(guān),與單項(xiàng)式的系數(shù)無關(guān)。
二、多項(xiàng)式
1、幾個單項(xiàng)式的和叫做多項(xiàng)式。
2、多項(xiàng)式中的每一個單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。
3、多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。
4、一個多項(xiàng)式有幾項(xiàng),就叫做幾項(xiàng)式。
5、多項(xiàng)式的每一項(xiàng)都包括項(xiàng)前面的符號。
6、多項(xiàng)式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。
7、多項(xiàng)式中次數(shù)的項(xiàng)的次數(shù),叫做這個多項(xiàng)式的次數(shù)。
三、整式
1、單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。
2、單項(xiàng)式或多項(xiàng)式都是整式。
3、整式不一定是單項(xiàng)式。
4、整式不一定是多項(xiàng)式。
5、分母中含有字母的代數(shù)式不是整式;而是今后將要學(xué)習(xí)的分式。
四、整式的加減
1、整式加減的理論根據(jù)是:去括號法則,合并同類項(xiàng)法則,以及乘法分配率。
2、幾個整式相加減,關(guān)鍵是正確地運(yùn)用去括號法則,然后準(zhǔn)確合并同類項(xiàng)。
3、幾個整式相加減的一般步驟:
(1)列出代數(shù)式:用括號把每個整式括起來,再用加減號連接。
(2)按去括號法則去括號。
(3)合并同類項(xiàng)。
4、代數(shù)式求值的一般步驟:
(1)代數(shù)式化簡。
(2)代入計(jì)算
(3)對于某些特殊的代數(shù)式,可采用“整體代入”進(jìn)行計(jì)算。
五、同底數(shù)冪的乘法
1、n個相同因式(或因數(shù))a相乘,記作an,讀作a的n次方(冪),其中a為底數(shù),n為指數(shù),an的結(jié)果叫做冪。
2、底數(shù)相同的冪叫做同底數(shù)冪。
3、同底數(shù)冪乘法的運(yùn)算法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。即:am﹒an=am+n。
4、此法則也可以逆用,即:am+n=am﹒an。
5、開始底數(shù)不相同的冪的乘法,如果可以化成底數(shù)相同的冪的乘法,先化成同底數(shù)冪再運(yùn)用法則。
六、冪的乘方
1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。
2、冪的乘方運(yùn)算法則:冪的乘方,底數(shù)不變,指數(shù)相乘。(am)n=amn。
3、此法則也可以逆用,即:amn=(am)n=(an)m。
七、積的乘方
1、積的乘方是指底數(shù)是乘積形式的乘方。
2、積的乘方運(yùn)算法則:積的乘方,等于把積中的每個因式分別乘方,然后把所得的冪相乘。即(ab)n=anbn。
3、此法則也可以逆用,即:anbn=(ab)n。
八、三種“冪的運(yùn)算法則”異同點(diǎn)
1、共同點(diǎn):
(1)法則中的底數(shù)不變,只對指數(shù)做運(yùn)算。
(2)法則中的底數(shù)(不為零)和指數(shù)具有普遍性,即可以是數(shù),也可以是式(單項(xiàng)式或多項(xiàng)式)。
(3)對于含有3個或3個以上的運(yùn)算,法則仍然成立。
2、不同點(diǎn):
(1)同底數(shù)冪相乘是指數(shù)相加。
(2)冪的乘方是指數(shù)相乘。
(3)積的乘方是每個因式分別乘方,再將結(jié)果相乘。
九、同底數(shù)冪的除法
1、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即:am÷an=am-n(a≠0)。
2、此法則也可以逆用,即:am-n=am÷an(a≠0)。
十、零指數(shù)冪
1、零指數(shù)冪的意義:任何不等于0的數(shù)的0次冪都等于1,即:a0=1(a≠0)。
篇3:初一數(shù)學(xué)下冊知識點(diǎn)總結(jié)
第五章:
本章重點(diǎn):一元一次不等式的解法,
本章難點(diǎn):了解不等式的解集和不等式組的解集的確定,正確運(yùn)用
不等式基本性質(zhì)3。
本章關(guān)鍵:徹底弄清不等式和等式的基本性質(zhì)的區(qū)別.
(1)不等式概念:用不等號(“≠”、“”)表示的不等關(guān)系的式子叫做不等式
(2)不等式的基本性質(zhì),它是解不等式的理論依據(jù).
(3)分清不等式的解集和解不等式是兩個完全不同的概念.
(4)不等式的解一般有無限多個數(shù)值,把它們表示在數(shù)軸上,(5)一元一次不等式的概念、解法是本章的重點(diǎn)和核心
(6)一元一次不等式的解集,在數(shù)軸上表示一元一次不等式的解集
(7)由兩個一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(同未知數(shù)的)一元一次不等式組成
(8).利用數(shù)軸確定一元一次不等式組的解集
第六章:
1.二元一次方程,二元一次方程組以及它的解,明確二元一次方程組的解是一對未知數(shù)的值,會檢驗(yàn)一對數(shù)值是不是某一個二元一次方程組的解.
2.一次方程組的兩種基本解法,能靈活運(yùn)用代入法,加減法解二元一次方程組及簡單的三元一次方程組.
3.根據(jù)給出的應(yīng)用問題,列出相應(yīng)的二元一次方程組或三元一次方程組,從而求出問題的解,并能根據(jù)問題的實(shí)際意義,檢查結(jié)果是否合理.
本章的重點(diǎn)是:二元一次方程組的解法——代入法,加減法以及列一次方程組解簡單的應(yīng)用問題.
本章的難點(diǎn)是:
1.會用適當(dāng)?shù)南椒ń舛淮畏匠探M及簡單的三元一次方程組;
2.正確地找出應(yīng)用題中的相等關(guān)系,列出一次方程組.
第七章
本章重點(diǎn)是:整式的乘除運(yùn)算,特別是對冪的運(yùn)算及乘法公式的應(yīng)用要達(dá)到熟練程度.
本章難點(diǎn)是:對乘法公式結(jié)構(gòu)特征和公式中字母意義的理解及乘法公式的靈活應(yīng)用
1.冪的運(yùn)算性質(zhì),正確地表述這些性質(zhì),并能運(yùn)用它們熟練地進(jìn)行有關(guān)計(jì)算.
2.單項(xiàng)式乘以(或除以)單項(xiàng)式,多項(xiàng)式乘以(或除以)單項(xiàng)式,以及多項(xiàng)式乘以多項(xiàng)式的法則,熟練地運(yùn)用它們進(jìn)行計(jì)算.
3.乘法公式的推導(dǎo)過程,能靈活運(yùn)用乘法公式進(jìn)行計(jì)算.
4.熟練地運(yùn)用運(yùn)算律、運(yùn)算法則進(jìn)行運(yùn)算,
5.體會用字母表示數(shù)和用字母表示式子的意義.通過式的變形,深入理解轉(zhuǎn)化的思想方法.
第八章:
1、認(rèn)識事物的幾種方法:觀察與實(shí)驗(yàn) 歸納與類比 猜想與證明 生活中的說理 數(shù)學(xué)中的說理
2、定義、命題、公理、定理
3、簡單幾何圖形中的推理
4、余角、補(bǔ)交、對頂角
5、平行線的判定
判定:一個公理兩個定理。
公理:兩直線被第三條直線所截,如果同位角相等(數(shù)量關(guān)系)兩直線平行(位置關(guān)系)
定理:內(nèi)錯角相等(數(shù)量關(guān)系)兩直線平行(位置關(guān)系)
定理:同旁內(nèi)角互補(bǔ)(數(shù)量關(guān)系)兩直線平行(位置關(guān)系).
平行線的性質(zhì):
兩直線平行,同位角相等
兩直線平行,內(nèi)錯角相等
兩直線平行,同旁內(nèi)角互補(bǔ)
由圖形的“位置關(guān)系”確定“數(shù)量關(guān)系”
第九章:
重點(diǎn):因式分解的方法,
難點(diǎn):分析多項(xiàng)式的特點(diǎn),選擇適合的分解方法
1. 因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分組分解法(十字相乘法)
3.運(yùn)用因式分解解決一些實(shí)際問題.(包括圖形習(xí)題)
第十章:
重點(diǎn)是:用統(tǒng)計(jì)知識解決現(xiàn)實(shí)生活中的實(shí)際問題.
難點(diǎn)是:用統(tǒng)計(jì)知識解決實(shí)際問題.
1.統(tǒng)計(jì)初步的基本知識,平均數(shù)、中位數(shù)、眾數(shù)等的計(jì)算、
2.了解數(shù)據(jù)的收集與整理、繪畫三種統(tǒng)計(jì)圖.
3.應(yīng)用統(tǒng)計(jì)知識解決實(shí)際問題能解決與統(tǒng)計(jì)相關(guān)的綜合問題.
篇4:初一數(shù)學(xué)下冊知識點(diǎn)總結(jié)
1 過兩點(diǎn)有且只有一條直線
2 兩點(diǎn)之間線段最短
3 同角或等角的補(bǔ)角相等
4 同角或等角的余角相等
5 過一點(diǎn)有且只有一條直線和已知直線垂直
6 直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7平行公理 經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內(nèi)錯角相等,兩直線平行
11 同旁內(nèi)角互補(bǔ),兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯角相等
14 兩直線平行,同旁內(nèi)角互補(bǔ)
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
21 全等三角形的對應(yīng)邊、對應(yīng)角相等
22邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等
23 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等
24 推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等
25 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個三角形全等
26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等
27 定理1 在角的平分線上的點(diǎn)到這個角的兩邊的距離相等
28 定理2 到一個角的兩邊的距離相同的點(diǎn),在這個角的平分線上
29 角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角)
31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33 推論3 等邊三角形的各角都相等,并且每一個角都等于60°
34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35 推論1 三個角都相等的三角形是等邊三角形
36 推論 2 有一個角等于60°的等腰三角形是等邊三角形
37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
38 直角三角形斜邊上的中線等于斜邊上的一半
39 定理 線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等 ?
40 逆定理 和一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41 線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42 定理1 關(guān)于某條直線對稱的兩個圖形是全等形
43 定理 2 如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線
44定理3 兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上
初一數(shù)學(xué)學(xué)習(xí)方法
1.讀的方法。初一同學(xué)往往不善于讀數(shù)學(xué)書,在讀的過程中,易沿用死記硬背的方法。那么如何有效地讀數(shù)學(xué)書呢?平時應(yīng)做到:
(1)粗讀。先粗略瀏覽教材的枝干,并能粗略掌握本章節(jié)知識的概貌,重、難點(diǎn);
(2)細(xì)讀。對重要的概念、性質(zhì)、判定、公式、法則、思想方法等反復(fù)閱讀、體會、思考,領(lǐng)會其實(shí)質(zhì)及其因果關(guān)系,并在不理解的地方作上記號(以便求教);
(3)研讀。要研究知識間的內(nèi)在聯(lián)系,研討書本知識安排意圖,并對知識進(jìn)行分析、歸納、總結(jié),以形成知識體系,完善認(rèn)知結(jié)構(gòu)。
讀書,先求讀懂,再求讀透,使得自學(xué)能力和實(shí)際應(yīng)用能力得到很好的訓(xùn)練。
2.聽的方法。“聽”是直接用感官去接受知識,而初一同學(xué)往往對課程增多、課堂學(xué)習(xí)量加大不適應(yīng),顧此失彼,精力分散,使聽課效果下降。因此應(yīng)在聽課的過程中注意做到:
(1) 聽每節(jié)課的學(xué)習(xí)要求;
(2) 聽知識的引入和形成過程;
(3) 聽懂教學(xué)中的重、難點(diǎn)(尤其是預(yù)習(xí)中不理解的或有疑問的知識點(diǎn));
(4) 聽例題關(guān)鍵部分的提示及應(yīng)用的數(shù)學(xué)思想方法;
(5) 聽好課后小結(jié)。
3.思考的方法。“思”指同學(xué)的思維。數(shù)學(xué)是思維的體操,學(xué)習(xí)離不開思維,
數(shù)學(xué)更離不開思維活動,善于思考則學(xué)得活,效率高;不善于思考則學(xué)得死,效果差。可見,科學(xué)的思維方法是掌握好知識的前提。七年級學(xué)生的思維往往還停留在小學(xué)的思維中,思維狹窄。因此在學(xué)習(xí)中要做到:
(1) 敢于思考、勤于思考、隨讀隨思、隨聽隨思。在看書、聽講、練習(xí)時要多思考;
(2) 善于思考。會抓住問題的關(guān)鍵、知識的重點(diǎn)進(jìn)行思考;
(3) 反思。要善于從回顧解題策略、方法的優(yōu)劣進(jìn)行分析、歸納、總結(jié)。
4.問的方法。孔子曰:“敏而好學(xué),不恥不問。” 愛因斯坦說過:“提出問題比解決問題更重要。”問能解惑,問能知新,任何學(xué)科的學(xué)習(xí)無不是從問題開始的。但七年級同學(xué)往往不善于問,不懂得如何問。因此,同學(xué)在平時學(xué)習(xí)中應(yīng)掌握問問題的一些方法,主要有:
(1) 追問法。即在某個問題得到回答后,順其思路對問題緊追不舍,刨根到底繼續(xù)發(fā)問;
(2) 反問法。根據(jù)教材和教師所講的內(nèi)容,從相反的方向把問題提出來;
(3) 類比提問法。據(jù)某些相似的概念、定理、性質(zhì)等的相互關(guān)系,通過比較和類推提出問題;
(4) 聯(lián)系實(shí)際提問法。結(jié)合某些知識點(diǎn),通過對實(shí)際生活中一些現(xiàn)象的觀察和分析提出問題。
此外,在提問時不僅要問其然,還要問其所以然。
5.記筆記的方法。很大一部分學(xué)生認(rèn)為數(shù)學(xué)沒有筆記可記,有記筆記的學(xué)生也是記得不夠合理。通常是教師在黑板上所寫的都記下來,用“記”代替“聽”和“思”。
有的筆記雖然記得很全,但收效甚微。因此,學(xué)生作筆記時應(yīng)做到以下幾點(diǎn):
(1) 在“聽”,“思”中有選擇地記錄;
(2) 記學(xué)習(xí)內(nèi)容的要點(diǎn),記自己有疑問的疑點(diǎn),記書中沒有的知識及教師補(bǔ)充的知識點(diǎn);
(3) 記解題思路、思想方法;
(4) 記課堂小結(jié)。并使學(xué)生明確筆記是為補(bǔ)充“聽”“思”的不足,是為最后復(fù)習(xí)準(zhǔn)備的,好的筆記能使復(fù)習(xí)達(dá)到事倍功半的效果。
正確的學(xué)習(xí)態(tài)度和科學(xué)的學(xué)習(xí)方法是學(xué)好數(shù)學(xué)的兩大基石。這兩大基石的形成又離不開平時的數(shù)學(xué)學(xué)習(xí)實(shí)踐,下面就幾個數(shù)學(xué)學(xué)習(xí)實(shí)踐中的具體問題談一談如何學(xué)好數(shù)學(xué)。
篇5:初一下冊數(shù)學(xué)知識點(diǎn)總結(jié)
初一下冊數(shù)學(xué)知識點(diǎn)歸納
一、整式
單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
a)由數(shù)與字母的積組成的代數(shù)式叫做單項(xiàng)式。單獨(dú)一個數(shù)或字母也是單項(xiàng)式。
b)單項(xiàng)式的系數(shù)是這個單項(xiàng)式的數(shù)字因數(shù),作為單項(xiàng)式的系數(shù),必須連同數(shù)字前面的性質(zhì)符號,如果一個單項(xiàng)式只是字母的積,并非沒有系數(shù),系數(shù)為1或-1。
c)一個單項(xiàng)式中,所有字母的指數(shù)和叫做這個單項(xiàng)式的次數(shù)(注意:常數(shù)項(xiàng)的單項(xiàng)式次數(shù)為0)
a)幾個單項(xiàng)式的和叫做多項(xiàng)式。在多項(xiàng)式中,每個單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。其中,不含字母的項(xiàng)叫做常數(shù)項(xiàng)。一個多項(xiàng)式中,次數(shù)最高項(xiàng)的次數(shù),叫做這個多項(xiàng)式的次數(shù).
b)單項(xiàng)式和多項(xiàng)式都有次數(shù),含有字母的單項(xiàng)式有系數(shù),多項(xiàng)式?jīng)]有系數(shù)。多項(xiàng)式的每一項(xiàng)都是單項(xiàng)式,一個多項(xiàng)式的項(xiàng)數(shù)就是這個多項(xiàng)式作為加數(shù)的單項(xiàng)式的個數(shù)。多項(xiàng)式中每一項(xiàng)都有它們各自的次數(shù),但是它們的次數(shù)不可能都作是為這個多項(xiàng)式的次數(shù),一個多項(xiàng)式的次數(shù)只有一個,它是所含各項(xiàng)的次數(shù)中最高的那一項(xiàng)次數(shù).
a)整式的加減實(shí)質(zhì)上就是去括號后,合并同類項(xiàng),運(yùn)算結(jié)果是一個多項(xiàng)式或是單項(xiàng)式.
b)括號前面是“-”號,去括號時,括號內(nèi)各項(xiàng)要變號,一個數(shù)與多項(xiàng)式相乘時,這個數(shù)與括號內(nèi)各項(xiàng)都要相乘。
二、同底數(shù)冪的乘法
(m,n都是整數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時,要注意以下幾點(diǎn):
a)法則使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體的數(shù)字式字母,也可以是一個單項(xiàng)或多項(xiàng)式;
b) 指數(shù)是1時,不要誤以為沒有指數(shù);
c)不要將同底數(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
d)當(dāng)三個或三個以上同底數(shù)冪相乘時,法則可推廣為(其中m、n、p均為整數(shù));
e)公式還可以逆用:(m、n均為整數(shù))
a)冪的乘方法則:(m,n都是整數(shù)數(shù))是冪的乘法法則為基礎(chǔ)推導(dǎo)出來的,但兩者不能混淆。 b)(m,n都為整數(shù))
c) 底數(shù)有負(fù)號時,運(yùn)算時要注意,底數(shù)是a與(-a)時不是同底,但可以利用乘方法則化成同底,如將(-a)3化成-a3
d)底數(shù)有時形式不同,但可以化成相同。
e) 要注意區(qū)別(ab)n與(a+b)n意義是不同的,不要誤以為(a+b)n=an+bn(a、b均不為零)。
f) 積的乘方法則:積的乘方,等于把積每一個因式分別乘方,再把所得的冪相乘,即(ab)n=anbn (n為正整數(shù))。
g) 冪的乘方與積乘方法則均可逆向運(yùn)用。
三、同底數(shù)冪的除法
a)同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即(a≠0).
b)在應(yīng)用時需要注意以下幾點(diǎn):
1) 法則使用的前提條件是“同底數(shù)冪相除”而且0不能做除數(shù),所以法則中a0。
2)任何不等于0的數(shù)的0次冪等于1,即a0=1(a≠0) ,如100=1 ,(-2.50=1),則00無意義。
c)任何不等于0的數(shù)的-p次冪(p是正整數(shù)),等于這個數(shù)的p的次冪的倒數(shù),即( a≠0,p是正整數(shù)),而0-1,0-3都是無意義的;當(dāng)a>0時,a-p的值一定是正的,當(dāng)a<0時,a-p的值可能是正也可能是負(fù)的,如, d)運(yùn)算要注意運(yùn)算順序。
四、整式的乘法
單項(xiàng)式相乘,它們的系數(shù)、相同字母分別相乘,對于只在一個單項(xiàng)式里含有的字母,連同它的指數(shù)作為積的一個因式。
單項(xiàng)式乘法法則在運(yùn)用時要注意以下幾點(diǎn):
a)積的系數(shù)等于各因式系數(shù)積,先確定符號,再計(jì)算絕對值。這時容易出現(xiàn)的錯誤的是,將系數(shù)相乘與指數(shù)相加混淆;
b)相同字母相乘,運(yùn)用同底數(shù)冪的乘法法則;
c)只在一個單項(xiàng)式里含有的字母,要連同它的指數(shù)作為積的一個因式;
d)單項(xiàng)式乘法法則對于三個以上的單項(xiàng)式相乘同樣適用;
e)單項(xiàng)式乘以單項(xiàng)式,結(jié)果仍是一個單項(xiàng)式。
單項(xiàng)式乘以多項(xiàng)式,是通過乘法對加法的分配律,把它轉(zhuǎn)化為單項(xiàng)式乘以單項(xiàng)式,即單項(xiàng)式與多項(xiàng)式相乘,就是用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加。 單項(xiàng)式與多項(xiàng)式相乘時要注意以下幾點(diǎn):
a)單項(xiàng)式與多項(xiàng)式相乘,積是一個多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同;
b)運(yùn)算時要注意積的符號,多項(xiàng)式的每一項(xiàng)都包括它前面的符號;
c) 在混合運(yùn)算時,要注意運(yùn)算順序。
多項(xiàng)式與多項(xiàng)式相乘,先用一個多項(xiàng)式中的每一項(xiàng)乘以另一個多項(xiàng)式的每一項(xiàng)相乘,再把所得的積相加。
多項(xiàng)式與多項(xiàng)式相乘時要注意以下幾點(diǎn):
a)多項(xiàng)式與多項(xiàng)式相乘要防止漏項(xiàng),檢查的方法是:在沒有合并同類項(xiàng)之前,積的項(xiàng)數(shù)應(yīng)等于原兩個多項(xiàng)式項(xiàng)數(shù)的積;
b)多項(xiàng)式相乘的結(jié)果應(yīng)注意合并同類項(xiàng);
c)對含有同一個字母的一次項(xiàng)系數(shù)是1的兩個一次二項(xiàng)式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次項(xiàng)系數(shù)為1,一次項(xiàng)系數(shù)等于兩個因式中常數(shù)項(xiàng)的和,常數(shù)項(xiàng)是兩個因式中常數(shù)項(xiàng)的積。對于一次項(xiàng)系數(shù)不為1的兩個一次二項(xiàng)式(mx+a)和(nx+b)相乘可以得到。
五、平方差公式
兩數(shù)和與這兩數(shù)差的積,等于它們的平方差,即。
其結(jié)構(gòu)特征是:
a)公式左邊是兩個二項(xiàng)式相乘,兩個二項(xiàng)式中第一項(xiàng)相同,第二項(xiàng)互為相反數(shù);
b) 公式右邊是兩項(xiàng)的平方差,即相同項(xiàng)的平方與相反項(xiàng)的平方之差。
六、完全平方公式
兩數(shù)和(或差)的平方,等于它們的平方和,加上(或減去)它們的積的2倍,即;
口訣:首平方,尾平方,2倍乘積在中央;
a)公式左邊是二項(xiàng)式的完全平方;
b)公式右邊共有三項(xiàng),是二項(xiàng)式中二項(xiàng)的平方和,再加上或減去這兩項(xiàng)乘積的2倍。
c)在運(yùn)用完全平方公式時,要注意公式右邊中間項(xiàng)的符號,以及避免出現(xiàn)這樣的錯誤。
七、整式的除法
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式;
多項(xiàng)式除以單項(xiàng)式,先把這個多項(xiàng)式的每一項(xiàng)除以單項(xiàng)式,再把所得的商相加,其特點(diǎn)是把多項(xiàng)式除以單項(xiàng)式轉(zhuǎn)化成單項(xiàng)式除以單項(xiàng)式,所得商的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同,另外還要特別注意符號。
初一數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)
一、數(shù)學(xué)學(xué)習(xí)方法的重要性
前蘇聯(lián)教學(xué)論專家巴班斯基曾指出的:“ 教學(xué)方法是由學(xué)習(xí)方式和教學(xué)方式運(yùn)用的協(xié)調(diào)一致的效果決定的。” 從國際教育改革和發(fā)展趨勢來看,教會學(xué)生學(xué)習(xí)、教會學(xué)生積極主動發(fā)展是世界各國的共同目標(biāo)。在人類進(jìn)入信息時代的新世紀(jì),人們將面臨知識不斷更新,學(xué)習(xí)成為貫穿人的一生的事情,一方面不僅要關(guān)注學(xué)生素質(zhì)發(fā)展的全面完善以及個性的健康和諧發(fā)展,另一方面還要關(guān)注到學(xué)生的學(xué)習(xí)和發(fā)展,更為重要的是要讓學(xué)生愿意學(xué)習(xí),學(xué)會學(xué)習(xí),掌握學(xué)習(xí)的方法、技能,能夠積極主動的學(xué)習(xí)。
二、數(shù)學(xué)學(xué)習(xí)的常用方法
我國要求尊重學(xué)生的學(xué)習(xí)主體地位,要真正把學(xué)生作為學(xué)習(xí)的主人翁看待;關(guān)注學(xué)生的學(xué)習(xí)過程,倡導(dǎo)學(xué)生主動參與,使學(xué)生在自主、合作、探究的方式中積極主動地進(jìn)行學(xué)習(xí)活動;培養(yǎng)學(xué)生的創(chuàng)新精神與實(shí)踐能力。特別是對于初中一年級,要為學(xué)生學(xué)習(xí)數(shù)學(xué)知識打下良好基礎(chǔ),數(shù)學(xué)學(xué)習(xí)方法的學(xué)習(xí)顯得更具有時代性和前瞻性。數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)是一個由非智力因素、學(xué)習(xí)方法、學(xué)習(xí)習(xí)慣、學(xué)習(xí)能力多元組成的統(tǒng)一整體,因此,應(yīng)以系統(tǒng)整體的觀點(diǎn)進(jìn)行學(xué)法指導(dǎo),目的在于使學(xué)生加強(qiáng)學(xué)習(xí)修養(yǎng),激發(fā)學(xué)習(xí)動機(jī);指導(dǎo)學(xué)生掌握科學(xué)的學(xué)習(xí)方法;指導(dǎo)學(xué)生學(xué)習(xí)數(shù)學(xué)的良好習(xí)慣,進(jìn)而提高學(xué)習(xí)能力及效果。
(1 )正確認(rèn)識數(shù)學(xué)學(xué)習(xí)方法的重要性。
啟發(fā)學(xué)生認(rèn)識到科學(xué)的學(xué)習(xí)方法是提高學(xué)習(xí)成績的重要因素,并把這一思想貫穿于整個教學(xué)過程之中。可以通過講述數(shù)學(xué)名人的故事,激勵學(xué)生,我結(jié)合《數(shù)軸》一課的內(nèi)容,在班上講述笛卡爾在病床上發(fā)現(xiàn)數(shù)軸,最終開創(chuàng)了用數(shù)軸表示有理數(shù)的故事。讓孩子懂得了獲得數(shù)學(xué)知識,學(xué)習(xí)數(shù)學(xué)的方法才是關(guān)鍵。在班級中,我多次召開數(shù)學(xué)學(xué)法研討會,讓學(xué)習(xí)成績優(yōu)秀的同學(xué)介紹經(jīng)驗(yàn),開辟黑板報(bào)專欄進(jìn)行學(xué)習(xí)方法的討論。
(2 )形成良好的非智力因素
非智力因素是學(xué)習(xí)方法指導(dǎo)得以進(jìn)行的基礎(chǔ)。初一學(xué)生好奇心強(qiáng)烈,但學(xué)習(xí)的持久性不長,如果在教學(xué)中具有積極的非智力因素基礎(chǔ),可以使學(xué)生學(xué)習(xí)的積極性長盛不衰。激發(fā)學(xué)習(xí)動機(jī),即激勵學(xué)生主體的內(nèi)部心理機(jī)制,調(diào)動其全部心理活動的積極性。比如在學(xué)習(xí)《概率初步認(rèn)識》一課中,教學(xué)引入時,我根據(jù)學(xué)生喜歡玩撲克牌的愛好,和他們來講撲克游戲,引發(fā)學(xué)生的興趣,使學(xué)生產(chǎn)生強(qiáng)烈的求知欲。有的課教師還可以運(yùn)用形象生動、貼近學(xué)生、幽默風(fēng)趣的語言來感染學(xué)生。
鍛煉學(xué)習(xí)數(shù)學(xué)的意志。心理學(xué)家認(rèn)為:意志在克服困難中表現(xiàn),也在經(jīng)受挫折、克服困難中發(fā)展,困難是培養(yǎng)學(xué)生意志力的“ 磨刀石”.我認(rèn)為應(yīng)該以練習(xí)為主,在初一的數(shù)學(xué)練習(xí)中,要經(jīng)常給學(xué)生安排適當(dāng)難度的練習(xí)題,讓他們付出一定的努力,在獨(dú)立思考中解決問題,但注意難度必須適當(dāng),因?yàn)槿籼y會挫傷學(xué)生的信心,太易又不能鍛煉學(xué)生的意志。
養(yǎng)成良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣。有的孩子習(xí)慣“ 悶” 題目,盲目的以為多做題就是學(xué)好數(shù)學(xué)的方法,這個不良的學(xué)習(xí)習(xí)慣,在平時的教學(xué)中老師一定要注意糾正。
(3 )指導(dǎo)學(xué)生掌握科學(xué)的數(shù)學(xué)學(xué)習(xí)方法。
①合理滲透。在教學(xué)中要挖掘教材內(nèi)容中的學(xué)法因素,把學(xué)法指導(dǎo)滲透到教學(xué)過程中。例如我在進(jìn)行《完全平方公式》教學(xué)時,很多孩子老是漏掉系數(shù)2 乘以首尾兩項(xiàng),于是我就給他們編了首順口溜,“ 頭平方,尾平方,頭尾組合2 拉走” ,這樣選取生動、有趣的記憶法來指導(dǎo)學(xué)生學(xué)習(xí),有利于突破知識的難點(diǎn)。②隨機(jī)點(diǎn)撥。無論是在授課階段還是在學(xué)生練習(xí)階段,教師要有強(qiáng)烈的學(xué)法指導(dǎo)意識,抓住最佳契機(jī),畫龍點(diǎn)睛地點(diǎn)撥學(xué)習(xí)方法。
③及時總結(jié)。在傳授知識、訓(xùn)練技能時,教師要根據(jù)教學(xué)實(shí)際,及時引導(dǎo)學(xué)生把所學(xué)的知識加以總結(jié)。我在完成一個單元的學(xué)習(xí)之后都讓孩子們養(yǎng)成自己總結(jié)的習(xí)慣,使單元重點(diǎn)系統(tǒng)化,并找出規(guī)律性的東西。
④遷移訓(xùn)練。總結(jié)所學(xué)內(nèi)容,進(jìn)行學(xué)法的理性反思,強(qiáng)化并進(jìn)行遷移運(yùn)用,在訓(xùn)練中掌握學(xué)法。
(4 )開設(shè)數(shù)學(xué)學(xué)法指導(dǎo)課,并列入數(shù)學(xué)教學(xué)計(jì)劃。
在我所任教的初一年級里,我每兩周一課時給學(xué)生上數(shù)學(xué)學(xué)法的指導(dǎo)課。結(jié)合正反例子講,結(jié)合數(shù)學(xué)學(xué)科的具體知識和學(xué)法特點(diǎn)講,結(jié)合學(xué)生的思想實(shí)際講,邊講邊示范邊訓(xùn)練。
數(shù)學(xué)學(xué)習(xí)能力包括觀察力、記憶力、思維力、想象力、注意力以及自學(xué)、交往、表達(dá)等能力。學(xué)習(xí)活動過程是一個需要深入探究的過程。在這一過程中,教師要挖掘教材因素,注意疏通信息渠道,善于引導(dǎo)學(xué)生積極思維,使學(xué)生不斷發(fā)現(xiàn)問題或提出假設(shè),檢驗(yàn)解決問題,從而形成勇于鉆研、不斷探究的習(xí)慣,架設(shè)起學(xué)生由知識向能力、能力與知識相融合的橋梁。總之,初一是學(xué)生知識奠定的根基時期,對學(xué)生數(shù)學(xué)學(xué)習(xí)方法的指導(dǎo),要力求做到轉(zhuǎn)變思想與傳授方法結(jié)合,學(xué)法與教法結(jié)合,課堂與課后結(jié)合,教師指導(dǎo)與學(xué)生探求結(jié)合,建立縱橫交錯的學(xué)法指導(dǎo)網(wǎng)絡(luò),促進(jìn)學(xué)生掌握正確的學(xué)習(xí)方法。為日后進(jìn)一步進(jìn)行數(shù)學(xué)學(xué)習(xí)打好良好的基礎(chǔ)。
初一數(shù)學(xué)學(xué)習(xí)攻略
1.讀的方法。同學(xué)們往往不善于讀數(shù)學(xué)書,在讀的過程中,易沿用死記硬背的方法。那么如何有效地讀數(shù)學(xué)書呢?平時應(yīng)做到:
一是粗讀。先粗略瀏覽教材的枝干,并能粗略掌握本章節(jié)知識的概貌,重、難點(diǎn);
二是細(xì)讀。對重要的概念、性質(zhì)、判定、公式、法則、思想方法等反復(fù)閱讀、體會、思考,領(lǐng)會其實(shí)質(zhì)及其因果關(guān)系,并在不理解的地方作上記號(以便求教);
三是研讀。要研究知識間的內(nèi)在聯(lián)系,研討書本知識安排意圖,并對知識進(jìn)行分析、歸納、總結(jié),以形成知識體系,完善認(rèn)知結(jié)構(gòu)。
讀書,先求讀懂,再求讀透,使得自學(xué)能力和實(shí)際應(yīng)用能力得到很好的訓(xùn)練。
2.聽的方法。“聽”是直接用感官去接受知識,而初中同學(xué)往往對課程增多、課堂學(xué)習(xí)量加大不適應(yīng),顧此失彼,精力分散,使聽課效果下降。因此應(yīng)在聽德智課程時注意做到:
(1)聽每節(jié)課的學(xué)習(xí)要求;
(2)聽知識的引入和形成過程;
(3)聽懂教學(xué)中的重、難點(diǎn)(尤其是預(yù)習(xí)中不理解的或有疑問的知識點(diǎn));
(4)聽例題關(guān)鍵部分的提示及應(yīng)用的數(shù)學(xué)思想方法;
(5)做好課后小結(jié)。
3.思考的方法。“思”指同學(xué)的思維。數(shù)學(xué)是思維的體操,學(xué)習(xí)離不開思維,數(shù)學(xué)更離不開思維活動,善于思考則學(xué)得活,效率高;不善于思考則學(xué)得死,效果差。可見,科學(xué)的思維方法是掌握好知識的前提。七年級學(xué)生的思維往往還停留在小學(xué)的思維中,思維狹窄。因此在學(xué)習(xí)中要做到:
(1)敢于思考、勤于思考、隨讀隨思、隨聽隨思。在看書、聽講、練習(xí)時要多思考;
(2)善于思考。會抓住問題的關(guān)鍵、知識的重點(diǎn)進(jìn)行思考;
(3)反思。要善于從回顧解題策略、方法的優(yōu)劣進(jìn)行分析、歸納、總結(jié)。
4.問的方法。孔子曰:“敏而好學(xué),不恥不問。”愛因斯坦說過:“提出問題比解決問題更重要。”問能解惑,問能知新,任何學(xué)科的學(xué)習(xí)無不是從問題開始的。但七年級同學(xué)往往不善于問,不懂得如何問。因此,同學(xué)在平時學(xué)習(xí)中應(yīng)掌握問問題的一些方法,主要有:
(1)追問法。即在某個問題得到回答后,順其思路對問題緊追不舍,刨根到底繼續(xù)發(fā)問;
(2)反問法。根據(jù)教材和教師所講的內(nèi)容,從相反的方向把問題提出來;
(3)類比提問法。據(jù)某些相似的概念、定理、性質(zhì)等的相互關(guān)系,通過比較和類推提出問題;
(4)聯(lián)系實(shí)際提問法。結(jié)合某些知識點(diǎn),通過對實(shí)際生活中一些現(xiàn)象的觀察和分析提出問題。
此外,在提問時不僅要問其然,還要問其所以然。
5.記筆記的方法。很大一部分學(xué)生認(rèn)為數(shù)學(xué)沒有筆記可記,有記筆記的學(xué)生也是記得不夠合理。通常是教師在黑板上所寫的都記下來,用“記”代替“聽”和“思”。有的筆記雖然記得很全,但收效甚微。因此,學(xué)生作筆記時應(yīng)做到以下幾點(diǎn):
(1)在“聽”,“思”中有選擇地記錄;
(2)記學(xué)習(xí)內(nèi)容的要點(diǎn),記自己有疑問的疑點(diǎn),記書中沒有的知識及教師補(bǔ)充的知識點(diǎn);
(3)記解題思路、思想方法;
(4)記課堂小結(jié)。并使學(xué)生明確筆記是為補(bǔ)充“聽”“思”的不足,是為最后復(fù)習(xí)準(zhǔn)備的,好的筆記能使復(fù)習(xí)達(dá)到事倍功半的效果。
正確的學(xué)習(xí)態(tài)度和科學(xué)的學(xué)習(xí)方法是學(xué)好數(shù)學(xué)的兩大基石。這兩大基石的形成又離不開平時的數(shù)學(xué)學(xué)習(xí)實(shí)踐。所以暑期期間每天給自己一些時間學(xué)習(xí)數(shù)學(xué)是很有必要的。
篇6:數(shù)學(xué)初一下冊知識點(diǎn)總結(jié)
列代數(shù)式的幾個注意事項(xiàng)
(1)數(shù)與字母相乘,或字母與字母相乘通常使用“·?”乘,或省略不寫。
(2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“·?”乘,也不能省略乘號。
(3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a。
(4)在代數(shù)式中出現(xiàn)除法運(yùn)算時,一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a,寫成a3的形式。
(5)a與b的.差寫作a-b,要注意字母順序,若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a-b和b-a。
實(shí)數(shù)
1、平方根
平方根,又叫二次方根,表示為〔±√ ̄〕,其中屬于非負(fù)數(shù)的平方根稱之為算術(shù)平方根。一個正數(shù)有兩個實(shí)平方根,它們互為相反數(shù),負(fù)數(shù)沒有平方根。
2、立方根
如果一個數(shù)的立方等于a,那么這個數(shù)叫a的立方根,也稱為三次方根。
3、立方根性質(zhì)
(1)在實(shí)數(shù)范圍內(nèi),任何實(shí)數(shù)的立方根只有一個
(2)在實(shí)數(shù)范圍內(nèi),負(fù)數(shù)不能開平方,但可以開立方
(3)0的立方根是0
4、實(shí)數(shù)
實(shí)數(shù),是有理數(shù)和無理數(shù)的總稱。實(shí)數(shù)具有封閉性、有序性、傳遞性、稠密性、完備性等。
平行線
經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
1、直線平行的條件
兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么兩直線平行。
兩條直線被第三條直線所截,如果同旁內(nèi)角互補(bǔ),那么兩直線平行。
2、平行線的性質(zhì)
兩條平行線被第三條直線所截,同位角相等。
兩條平行線被第三條直線所截,內(nèi)錯角相等。
兩條平行線被第三條直線所截,同旁內(nèi)角互補(bǔ)。
篇7:初一數(shù)學(xué)下冊知識點(diǎn)總結(jié)
不等式與不等式組
1.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
2.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
3.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
4.一元一次不等式組的解集:一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
5.不等式的性質(zhì):
不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個數(shù)(或式子),不等號的方向不變。
不等式的基本性質(zhì)2:不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變。
不等式的基本性質(zhì)3:不等式的兩邊都乘以(或除以)同一個負(fù)數(shù),不等號的方向改變。
點(diǎn)、線、面、體知識點(diǎn)
1.幾何圖形的組成
點(diǎn):線和線相交的地方是點(diǎn),它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
2.點(diǎn)動成線,線動成面,面動成體。
點(diǎn)、直線、射線和線段的表示
在幾何里,我們常用字母表示圖形。
一個點(diǎn)可以用一個大寫字母表示。
一條直線可以用一個小寫字母表示。
一條射線可以用端點(diǎn)和射線上另一點(diǎn)來表示。
一條線段可用它的端點(diǎn)的兩個大寫字母來表示。
注意:
(1)表示點(diǎn)、直線、射線、線段時,都要在字母前面注明點(diǎn)、直線、射線、線段。
(2)直線和射線無長度,線段有長度。
(3)直線無端點(diǎn),射線有一個端點(diǎn),線段有兩個端點(diǎn)。
(4)點(diǎn)和直線的位置關(guān)系有線面兩種:
①點(diǎn)在直線上,或者說直線經(jīng)過這個點(diǎn)。
②點(diǎn)在直線外,或者說直線不經(jīng)過這個點(diǎn)。
篇8:初一數(shù)學(xué)下冊知識點(diǎn)總結(jié)
相交線與平行線知識要點(diǎn)
1、在同一平面內(nèi),兩條直線的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。
2、在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有一個公共點(diǎn),稱這兩條直線相交;如果兩條直線沒有公共點(diǎn),稱這兩條直線平行。
3、兩條直線相交所構(gòu)成的四個角中,有公共頂點(diǎn)且有一條公共邊的兩個角是
鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì):鄰補(bǔ)角互補(bǔ)。如圖1所示,與互為鄰補(bǔ)角,
與互為鄰補(bǔ)角。+=180°;+=180°;+=180°;+=180°。
4、兩條直線相交所構(gòu)成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質(zhì):對頂角相等。如圖1所示,與互為對頂角。=;=。
5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當(dāng)=90°時,⊥。
垂線的性質(zhì):
性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。
性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。
性質(zhì)3:如圖2所示,當(dāng)a⊥b時,====90°。
點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長度叫點(diǎn)到直線的距離。
6、同位角、內(nèi)錯角、同旁內(nèi)角基本特征:
①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣
的兩個角叫同位角。圖3中,共有對同位角:與是同位角;
與是同位角;與是同位角;與是同位角。
②在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個角叫內(nèi)錯角。圖3中,共有對內(nèi)錯角:與是內(nèi)錯角;與是內(nèi)錯角。
③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內(nèi)角。圖3中,共有對同旁內(nèi)角:與是同旁內(nèi)角;與是同旁內(nèi)角。
7、平行公理:經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質(zhì):
性質(zhì)1:兩直線平行,同位角相等。如圖4所示,如果a∥b,則=;=;=;=。
性質(zhì)2:兩直線平行,內(nèi)錯角相等。如圖4所示,如果a∥b,則=;=。
性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。如圖4所示,如果a∥b,則+=180°;+=180°。
性質(zhì)4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果=
或=或=或=,則a∥b。
判定2:內(nèi)錯角相等,兩直線平行。如圖5所示,如果=或=,則a∥b。
判定3:同旁內(nèi)角互補(bǔ),兩直線平行。如圖5所示,如果+=180°;
+=180°,則a∥b。
判定4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則∥。
9、判斷一件事情的語句叫命題。命題由題設(shè)和結(jié)論兩部分組成,有真命題和假命題之分。如果題設(shè)成立,那么結(jié)論一定成立,這樣的命題叫真命題;如果題設(shè)成立,那么結(jié)論不一定成立,這樣的命題叫假命題。真命題的正確性是經(jīng)過推理證實(shí)的,這樣的真命題叫定理,它可以作為繼續(xù)推理的依據(jù)。
10、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移后,新圖形與原圖形的形狀和大小完全相同。平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到的,這樣的兩個點(diǎn)叫做對應(yīng)點(diǎn)。
平移性質(zhì):平移前后兩個圖形中①對應(yīng)點(diǎn)的連線平行且相等;②對應(yīng)線段相等;③對應(yīng)角相等。
初中數(shù)學(xué)學(xué)習(xí)方法
一、主動預(yù)習(xí)
預(yù)習(xí)的目的是主動獲取新知識的過程,有助于調(diào)動學(xué)習(xí)積極主動性,新知識在未講解之前,認(rèn)真閱讀教材,養(yǎng)成主動預(yù)習(xí)的習(xí)慣,是獲得數(shù)學(xué)知識的重要手段。
因此,培養(yǎng)自學(xué)能力,在老師的引導(dǎo)下學(xué)會看書,帶著老師精心設(shè)計(jì)的思考題去預(yù)習(xí)。如自學(xué)例題時,要弄清例題講的什么內(nèi)容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。抓住這些重要問題,動腦思考,步步深入,學(xué)會運(yùn)用已有的知識去獨(dú)立探究新的知識。
二、主動思考
很多同學(xué)在聽課的過程中,只是簡簡單單的聽,不能主動思考,這樣遇到實(shí)際問題時,會無從下手,不知如何應(yīng)用所學(xué)的知識去解答問題。主要原因還是聽課過程中不思考惹的禍。除了我們跟著老師的思路走,還要多想想為什么要這么定義,這樣解題的好處是什么,這樣主動去想,不僅能讓我們更加認(rèn)真的聽課,也能激發(fā)對某些知識的興趣,更有助于學(xué)習(xí)。靠著老師的引導(dǎo),去思考解題的思路;答案真的不重要;重要的是方法!
三、善于總結(jié)規(guī)律
解答數(shù)學(xué)問題總的講是有規(guī)律可循的。在解題時,要注意總結(jié)解題規(guī)律,在解決每一道練習(xí)題后,要注意回顧以下問題:
(1)本題最重要的特點(diǎn)是什么?
(2)解本題用了哪些基本知識與基本圖形?
(3)本題你是怎樣觀察、聯(lián)想、變換來實(shí)現(xiàn)轉(zhuǎn)化的?
(4)解本題用了哪些數(shù)學(xué)思想、方法?
(5)解本題最關(guān)鍵的一步在那里?
(6)你做過與本題類似的題目嗎?在解法、思路上有什么異同?
(7)本題你能發(fā)現(xiàn)幾種解法?其中哪一種最優(yōu)?那種解法是特殊技巧?你能總結(jié)在什么情況下采用嗎?
把這一連串的問題貫穿于解題各環(huán)節(jié)中,逐步完善,持之以恒,孩子解題的心理穩(wěn)定性和應(yīng)變能力就可以不斷提高,思維能力就會得到鍛煉和發(fā)展。
四、拓寬解題思路
數(shù)學(xué)解題不要局限于本題,而要做到舉一反三、多思多想,解答完一個題目,要想想有沒有其他更加簡便的方法,這樣能夠幫助大家拓寬思路,這樣在以后的做題過程中就會有更多的選擇。
五、必須要有錯題本
說到錯題本不少同學(xué)都覺的自己的記憶力好,不需要錯題本就能記住,這是一種“錯覺”,每個人都有這種感覺,等到題目增多,學(xué)習(xí)內(nèi)容加深,這時就會發(fā)現(xiàn)自己力不從心了,因此,錯題本能夠隨時記錄自己的知識短板,幫助強(qiáng)化知識體系,有助于提升學(xué)習(xí)效率。有很多學(xué)霸都是因?yàn)榉e極使用了錯題本,而考取了高分。
六、五個方面思考
“1×5”學(xué)習(xí)法,就是做一道題,要從五個方面思考,這點(diǎn)可以結(jié)合前面說到的“總結(jié)規(guī)律”“拓展思路”。五個方面分別為:
①這道題考查的知識點(diǎn)是什么。
②為什么要這樣做。
③我是如何想到的。
④還可以怎樣做,有其它方法嗎?
⑤一題多變看看它有幾種變化的形式
千萬不要覺得麻煩,學(xué)習(xí)習(xí)慣的培養(yǎng)最難的就是最初的一個月,這就像火箭升空一樣,最難的就是點(diǎn)火起飛階段,所以,一旦養(yǎng)成了良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣和思維方式,在今后的學(xué)習(xí)中就會非常的輕松。
七、獨(dú)立完成作業(yè)
現(xiàn)在很多學(xué)生用一些APP來幫助寫作業(yè),找個照片就有答案,或者是抄襲其他同學(xué)的作業(yè),這可以分兩種情況來說,一種是為了圖快、求速度,如果經(jīng)常這樣會養(yǎng)成不良的審題習(xí)慣,容易走馬觀花、粗心大意。還有一種是為了圖方便,這會導(dǎo)致同學(xué)們養(yǎng)成“怕麻煩”的心理,一旦題目有些難度,自己就開始心煩意亂,思路模糊,因此,大家一定要養(yǎng)成良好的獨(dú)立完成作業(yè)的習(xí)慣。
篇9:初一下冊數(shù)學(xué)知識點(diǎn)
【知識點(diǎn)一】實(shí)數(shù)的分類
1、按定義分類:2.按性質(zhì)符號分類:
注:0既不是正數(shù)也不是負(fù)數(shù).
【知識點(diǎn)二】實(shí)數(shù)的相關(guān)概念
1.相反數(shù)
(1)代數(shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù).0的相反數(shù)是0.
(2)幾何意義:在數(shù)軸上原點(diǎn)的兩側(cè),與原點(diǎn)距離相等的兩個點(diǎn)表示的兩個數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應(yīng)的點(diǎn)關(guān)于原點(diǎn)對稱.
(3)互為相反數(shù)的兩個數(shù)之和等于0.a、b互為相反數(shù)a+b=0.
2.絕對值|a|≥0.
3.倒數(shù)(1)0沒有倒數(shù)(2)乘積是1的兩個數(shù)互為倒數(shù).a、b互為倒數(shù).
4.平方根
(1)如果一個數(shù)的平方等于a,這個數(shù)就叫做a的平方根.一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負(fù)數(shù)沒有平方根.a(a≥0)的平方根記作.
(2)一個正數(shù)a的正的平方根,叫做a的算術(shù)平方根.a(a≥0)的算術(shù)平方根記作.
5.立方根
如果x3=a,那么x叫做a的立方根.一個正數(shù)有一個正的立方根;一個負(fù)數(shù)有一個負(fù)的立方根;零的立方根是零.
【知識點(diǎn)三】實(shí)數(shù)與數(shù)軸
數(shù)軸定義:規(guī)定了原點(diǎn),正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.
【知識點(diǎn)四】實(shí)數(shù)大小的比較
1.對于數(shù)軸上的任意兩個點(diǎn),靠右邊的點(diǎn)所表示的數(shù)較大.
2.正數(shù)都大于0,負(fù)數(shù)都小于0,兩個正數(shù),絕對值較大的那個正數(shù)大;兩個負(fù)數(shù);絕對值大的反而小.
3.無理數(shù)的比較大小:
【知識點(diǎn)五】實(shí)數(shù)的運(yùn)算
1.加法
同號兩數(shù)相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;互為相反數(shù)的兩個數(shù)相加得0;一個數(shù)同0相加,仍得這個數(shù).
2.減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù).
3.乘法
幾個非零實(shí)數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正;當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù).幾個數(shù)相乘,有一個因數(shù)為0,積就為0.
4.除法
除以一個數(shù),等于乘上這個數(shù)的倒數(shù).兩個數(shù)相除,同號得正,異號得負(fù),并把絕對值相除.0除以任何一個不等于0的數(shù)都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數(shù)的任何次冪是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù).
(2)正數(shù)和0可以開平方,負(fù)數(shù)不能開平方;正數(shù)、負(fù)數(shù)和0都可以開立方.
(3)零指數(shù)與負(fù)指數(shù)
【知識點(diǎn)六】有效數(shù)字和科學(xué)記數(shù)法
1.有效數(shù)字:
一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位為止,所有的數(shù)字,都叫做這個近似數(shù)的有效數(shù)字.
2.科學(xué)記數(shù)法:
把一個數(shù)用(1≤<10,n為整數(shù))的形式記數(shù)的方法叫科學(xué)記數(shù)法.
篇10:初一下冊數(shù)學(xué)知識點(diǎn)
1.有序數(shù)對:用含有兩個數(shù)的詞表示一個確定的位置,其中各個數(shù)表示不同的含義,我們把這種有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對,記作(a,b)其中a表示橫軸,b表示縱軸。
2.平面直角坐標(biāo)系:在同一個平面上互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與垂直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,豎直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點(diǎn)O稱為直角坐標(biāo)系的原點(diǎn)。
3.橫軸、縱軸、原點(diǎn):水平的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
4.坐標(biāo):對于平面內(nèi)任一點(diǎn)P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)。
5.象限:兩條坐標(biāo)軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向一次叫第二象限、第三象限、第四象限。坐標(biāo)軸上的點(diǎn)不在任何一個象限內(nèi)。
6.特殊位置的點(diǎn)的坐標(biāo)的特點(diǎn)
(1)x軸上的點(diǎn)的縱坐標(biāo)為零;y軸上的點(diǎn)的橫坐標(biāo)為零。
(2)第一、三象限角平分線上的點(diǎn)橫、縱坐標(biāo)相等;第二、四象限角平分線上的點(diǎn)橫、縱坐標(biāo)互為相反數(shù)。
(3)在任意的兩點(diǎn)中,如果兩點(diǎn)的橫坐標(biāo)相同,則兩點(diǎn)的連線平行于縱軸;如果兩點(diǎn)的縱坐標(biāo)相同,則兩點(diǎn)的連線平行于橫軸。
(4)點(diǎn)到軸及原點(diǎn)的距離。
點(diǎn)到x軸的距離為|y|;點(diǎn)到y(tǒng)軸的距離為|x|;點(diǎn)到原點(diǎn)的距離為x的平方加y的平方再開根號;
7.在平面直角坐標(biāo)系中對稱點(diǎn)的特點(diǎn)
(1)關(guān)于x成軸對稱的點(diǎn)的坐標(biāo),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù)。(橫同縱反)
(2)關(guān)于y成軸對稱的點(diǎn)的坐標(biāo),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)。(橫反縱同)
(3)關(guān)于原點(diǎn)成中心對稱的點(diǎn)的坐標(biāo),橫坐標(biāo)與橫坐標(biāo)互為相反數(shù),縱坐標(biāo)與縱坐標(biāo)互為相反數(shù)。(橫縱皆反)
1.不等式:用符號,,,表示大小關(guān)系的式子叫做不等式。
2.不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的大于號、小于號,連接的不等式稱為嚴(yán)格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號),連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個含未知數(shù)的不等式有無數(shù)個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達(dá)出來,例如:x-12的解集是x3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x) G(x)與不等式 G(x)F(x)同解。
(2)如果不等式F(x) G(x)的定義域被解析式H(x)的定義域所包含,那么不等式 F(x) G(x)與不等式H(x)+F(x)
(3)如果不等式F(x) G(x)的定義域被解析式H(x)的定義域所包含,并且H(x)0,那么不等式F(x) G(x)與不等式H(x)F(x)0,那么不等式F(x) G(x)與不等式H(x)F(x)H(x)G(x)同解。
篇11:初一下冊數(shù)學(xué)知識點(diǎn)
一、知識網(wǎng)絡(luò)結(jié)構(gòu)
二、知識要點(diǎn)
1、在同一平面內(nèi),兩條直線的位置關(guān)系有兩種:相交和平行,垂直是相交的一種特殊情況。
2、在同一平面內(nèi),不相交的兩條直線叫平行線。如果兩條直線只有一個公共點(diǎn),稱這兩條直線相交;如果兩條直線沒有公共點(diǎn),稱這兩條直線平行。
3、兩條直線相交所構(gòu)成的四個角中,有公共頂點(diǎn)且有一條公共邊的兩個角是
鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì):鄰補(bǔ)角互補(bǔ)。如圖1所示,與互為鄰補(bǔ)角,
與互為鄰補(bǔ)角。+=180°;+=180°;+=180°;
+=180°。
4、兩條直線相交所構(gòu)成的四個角中,一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角。對頂角的性質(zhì):對頂角相等。如圖1所示,與互為對頂角。=;
=。
5、兩條直線相交所成的角中,如果有一個是直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當(dāng)=90°時,⊥。
垂線的性質(zhì):
性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。
性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。
性質(zhì)3:如圖2所示,當(dāng)a⊥b時,====90°。
點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長度叫點(diǎn)到直線的距離。
6、同位角、內(nèi)錯角、同旁內(nèi)角基本特征:
①在兩條直線(被截線)的同一方,都在第三條直線(截線)的同一側(cè),這樣
的兩個角叫同位角。圖3中,共有對同位角:與是同位角;
與是同位角;與是同位角;與是同位角。
②在兩條直線(被截線)之間,并且在第三條直線(截線)的兩側(cè),這樣的兩個角叫內(nèi)錯角。圖3中,共有對內(nèi)錯角:與是內(nèi)錯角;與是內(nèi)錯角。
③在兩條直線(被截線)的之間,都在第三條直線(截線)的同一旁,這樣的兩個角叫同旁內(nèi)角。圖3中,共有對同旁內(nèi)角:與是同旁內(nèi)角;與是同旁內(nèi)角。
7、平行公理:經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質(zhì):
性質(zhì)1:兩直線平行,同位角相等。如圖4所示,如果a‖b,
則=;=;=;=。
性質(zhì)2:兩直線平行,內(nèi)錯角相等。如圖4所示,如果a‖b,則=;=。
性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。如圖4所示,如果a‖b,則+=180°;
+=180°。
性質(zhì)4:平行于同一條直線的兩條直線互相平行。如果a‖b,a‖c,則‖。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果=
或=或=或=,則a‖b。
判定2:內(nèi)錯角相等,兩直線平行。如圖5所示,如果=或=,則a‖b。
判定3:同旁內(nèi)角互補(bǔ),兩直線平行。如圖5所示,如果+=180°;
+=180°,則a‖b。
判定4:平行于同一條直線的兩條直線互相平行。如果a‖b,a‖c,則‖。
9、判斷一件事情的語句叫命題。命題由題設(shè)和結(jié)論兩部分組成,有真命題和假命題之分。如果題設(shè)成立,那么結(jié)論一定成立,這樣的命題叫真命題;如果題設(shè)成立,那么結(jié)論不一定成立,這樣的命題叫假命題。真命題的正確性是經(jīng)過推理證實(shí)的,這樣的真命題叫定理,它可以作為繼續(xù)推理的依據(jù)。
10、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移后,新圖形與原圖形的形狀和大小完全相同。平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到的,這樣的兩個點(diǎn)叫做對應(yīng)點(diǎn)。
平移性質(zhì):平移前后兩個圖形中①對應(yīng)點(diǎn)的連線平行且相等;②對應(yīng)線段相等;③對應(yīng)角相等。
篇12:關(guān)于初一數(shù)學(xué)下冊知識點(diǎn)
平面直角坐標(biāo)系
1、含有兩個數(shù)的詞來表示一個確定個位置,其中兩個數(shù)各自表示不同的意義,我們把這種有順序的兩個數(shù)組成的數(shù)對,叫做有序數(shù)對,記作(a,b)
2、數(shù)軸上的點(diǎn)可以用一個數(shù)來表示,這個數(shù)叫做這個點(diǎn)的坐標(biāo)。
3、在平面內(nèi)畫兩條互相垂直,并且有公共原點(diǎn)的數(shù)軸。這樣我們就說在平面上建立了平面直角坐標(biāo)系,簡稱直角坐標(biāo)系。平面直角坐標(biāo)系有兩個坐標(biāo)軸,其中橫軸為X軸,取向右方向?yàn)檎较?縱軸為Y軸,取向上為正方向。坐標(biāo)系所在平面叫做坐標(biāo)平面,兩坐標(biāo)軸的公共原點(diǎn)叫做平面直角坐標(biāo)系的原點(diǎn)。X軸和Y軸把坐標(biāo)平面分成四個象限,右上面的叫做第一象限,其他三個部分按逆時針方向依次叫做第二象限、第三象限和第四象限。象限以數(shù)軸為界,橫軸、縱軸上的點(diǎn)及原點(diǎn)不屬于任何象限。一般情況下,x軸和y軸取相同的單位長度。
4、特殊位置的點(diǎn)的坐標(biāo)的特點(diǎn):
(1)x軸上的點(diǎn)的縱坐標(biāo)為零;y軸上的點(diǎn)的橫坐標(biāo)為零。
(2)第一、三象限角平分線上的點(diǎn)橫、縱坐標(biāo)相等;第二、四象限角平分線上的點(diǎn)橫、縱坐標(biāo)互為相反數(shù)。
(3)在任意的兩點(diǎn)中,如果兩點(diǎn)的橫坐標(biāo)相同,則兩點(diǎn)的連線平行于縱軸;如果兩點(diǎn)的縱坐標(biāo)相同,則兩點(diǎn)的連線平行于橫軸。
5、點(diǎn)到軸及原點(diǎn)的距離
點(diǎn)到x軸的距離為|y|;點(diǎn)到y(tǒng)軸的距離為|x|;點(diǎn)到原點(diǎn)的距離為x的平方加y的平方再開根號;
在平面直角坐標(biāo)系中對稱點(diǎn)的特點(diǎn):
1、關(guān)于x成軸對稱的點(diǎn)的坐標(biāo),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù)。
2、關(guān)于y成軸對稱的點(diǎn)的坐標(biāo),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)。
3、關(guān)于原點(diǎn)成中心對稱的點(diǎn)的坐標(biāo),橫坐標(biāo)與橫坐標(biāo)互為相反數(shù),縱坐標(biāo)與縱坐標(biāo)互為相反數(shù)。
各象限內(nèi)和坐標(biāo)軸上的點(diǎn)和坐標(biāo)的規(guī)律:
第一象限:(+,+)第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)
x軸正方向:(+,0)x軸負(fù)方向:(-,0)y軸正方向:(0,+)y軸負(fù)方向:(0,-)
x軸上的點(diǎn)縱坐標(biāo)為0,y軸橫坐標(biāo)為0。
二元一次方程組
(1)定義
二元一次方程是指含有兩個未知數(shù)(例如x和y),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程。兩個結(jié)合在一起的共含有兩個未知數(shù)的一次方程叫二元一次方程組。
(2)解二元一次方程的方法
①代入消元法
②加減消元法
不等式與不等式組
(1)不等式
用不等號(,≥,≤,≠)連接的式子叫做不等式。
(2)不等式的性質(zhì)
①對稱性;
②傳遞性;
③加法單調(diào)性,即同向不等式可加性;
④乘法單調(diào)性;
⑤同向正值不等式可乘性;
⑥正值不等式可乘方;
⑦正值不等式可開方;
(3)一元一次不等式
用不等號連接的,含有一個未知數(shù),并且未知數(shù)的次數(shù)都是1,未知數(shù)的系數(shù)不為0,左右兩邊為整式的式子叫做一元一次不等式。
(4)一元一次不等式組
一元一次不等式組是由幾個含有同一個未知數(shù)的一元一次不等式組成的不等式組。
相交線與平行線
1、兩條直線相交所成的四個角中,相鄰的兩個角叫做鄰補(bǔ)角,特點(diǎn)是兩個角共用一條邊,另一條邊互為反向延長線,性質(zhì)是鄰補(bǔ)角互補(bǔ);相對的兩個角叫做對頂角,特點(diǎn)是它們的兩條邊互為反向延長線。性質(zhì)是對頂角相等。
2、三線八角:對頂角(相等),鄰補(bǔ)角(互補(bǔ)),同位角,內(nèi)錯角,同旁內(nèi)角。
3、兩條直線被第三條直線所截:
同位角F(在兩條直線的同一旁,第三條直線的同一側(cè))
內(nèi)錯角Z(在兩條直線內(nèi)部,位于第三條直線兩側(cè))
同旁內(nèi)角U(在兩條直線內(nèi)部,位于第三條直線同側(cè))
4、兩條直線相交所成的四個角中,如果有一個角為90度,則稱這兩條直線互相垂直。其中一條直線叫做另外一條直線的垂線,他們的交點(diǎn)稱為垂足。
5、垂直三要素:垂直關(guān)系,垂直記號,垂足
6、垂直公理:過一點(diǎn)有且只有一條直線與已知直線垂直。
7、垂線段最短。
8、點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長度。
9、平行公理:經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行。
推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。如果b//a,c//a,那么b//c
10、平行線的判定:
①同位角相等,兩直線平行。②內(nèi)錯角相等,兩直線平行。 ③同旁內(nèi)角互補(bǔ),兩直線平行。
11、推論:在同一平面內(nèi),如果兩條直線都垂直于同一條直線,那么這兩條直線平行。
篇13:初一數(shù)學(xué)下冊知識點(diǎn)
1、單項(xiàng)式:數(shù)字與字母的積,叫做單項(xiàng)式。
2、多項(xiàng)式:幾個單項(xiàng)式的和,叫做多項(xiàng)式。
3、整式:單項(xiàng)式和多項(xiàng)式統(tǒng)稱整式。
4、單項(xiàng)式的次數(shù):單項(xiàng)式中所有字母的指數(shù)的和叫單項(xiàng)式的次數(shù)。
5、多項(xiàng)式的次數(shù):多項(xiàng)式中次數(shù)的項(xiàng)的次數(shù),就是這個多項(xiàng)式的次數(shù)。
6、余角:兩個角的和為90度,這兩個角叫做互為余角。
7、補(bǔ)角:兩個角的和為180度,這兩個角叫做互為補(bǔ)角。
8、對頂角:兩個角有一個公共頂點(diǎn),其中一個角的兩邊是另一個角兩邊的反向延長線。這兩個角就是對頂角。
9、同位角:在“三線八角”中,位置相同的角,就是同位角。
10、內(nèi)錯角:在“三線八角”中,夾在兩直線內(nèi),位置錯開的角,就是內(nèi)錯角。
11、同旁內(nèi)角:在“三線八角”中,夾在兩直線內(nèi),在第三條直線同旁的角,就是同旁內(nèi)角。
12、有效數(shù)字:一個近似數(shù),從左邊第一個不為0的數(shù)開始,到精確的那位止,所有的數(shù)字都是有效數(shù)字。
13、概率:一個事件發(fā)生的可能性的大小,就是這個事件發(fā)生的概率。
14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
15、三角形的角平分線:在三角形中,一個內(nèi)角的角平分線與它的對邊相交,這個角的頂點(diǎn)與交點(diǎn)之間的線段叫做三角形的角平分線。
16、三角形的中線:在三角形中連接一個頂點(diǎn)與它的對邊中點(diǎn)的線段,叫做這個三角形的中線。
17、全等圖形:兩個能夠重合的圖形稱為全等圖形。
18、變量:變化的數(shù)量,就叫變量。
19、自變量:在變化的量中主動發(fā)生變化的,變叫自變量。
20、因變量:隨著自變量變化而被動發(fā)生變化的量,叫因變量。
21、軸對稱圖形:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形。
22、對稱軸:軸對稱圖形中對折的直線叫做對稱軸。
篇14:初一數(shù)學(xué)下冊知識點(diǎn)
1.1正數(shù)與負(fù)數(shù)
在以前學(xué)過的0以外的數(shù)前面加上負(fù)號“-”的數(shù)叫負(fù)數(shù)(negativenumber)。
與負(fù)數(shù)具有相反意義,即以前學(xué)過的0以外的數(shù)叫做正數(shù)(positivenumber)(根據(jù)需要,有時在正數(shù)前面也加上“+”)。
1.2有理數(shù)
正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù)(integer),正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù)(fraction)。
整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)(rationalnumber)。
通常用一條直線上的點(diǎn)表示數(shù),這條直線叫數(shù)軸(numberaxis)。
數(shù)軸三要素:原點(diǎn)、正方向、單位長度。
在直線上任取一個點(diǎn)表示數(shù)0,這個點(diǎn)叫做原點(diǎn)(origin)。
只有符號不同的兩個數(shù)叫做互為相反數(shù)(oppositenumber)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)
數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對值(absolutevalue),記作|a|。
一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負(fù)數(shù),絕對值大的反而小。
1.3有理數(shù)的加減法
有理數(shù)加法法則:
1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。
2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。互為相反數(shù)的兩個數(shù)相加得0。
3.一個數(shù)同0相加,仍得這個數(shù)。
有理數(shù)減法法則:減去一個數(shù),等于加這個數(shù)的相反數(shù)。
1.4有理數(shù)的乘除法
有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。任何數(shù)同0相乘,都得0。
乘積是1的兩個數(shù)互為倒數(shù)。
有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。mì
求n個相同因數(shù)的積的運(yùn)算,叫乘方,乘方的結(jié)果叫冪(power)。在a的n次方中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponent)。
負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。
把一個大于10的數(shù)表示成a×10的n次方的形式,使用的就是科學(xué)計(jì)數(shù)法。
從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個數(shù)的有效數(shù)字(significantdigit)。
篇15:初一數(shù)學(xué)下冊知識點(diǎn)
初一下冊數(shù)學(xué)知識點(diǎn)總結(jié)北師大版
一、同底數(shù)冪的乘法
(m,n都是整數(shù))是冪的運(yùn)算中最基本的法則,在應(yīng)用法則運(yùn)算時,要注意以下幾點(diǎn):
a)法則使用的前提條件是:冪的底數(shù)相同而且是相乘時,底數(shù)a可以是一個具體的數(shù)字式字母,也可以是一個單項(xiàng)或多項(xiàng)式;
b)指數(shù)是1時,不要誤以為沒有指數(shù);
c)不要將同底數(shù)冪的乘法與整式的加法相混淆,對乘法,只要底數(shù)相同指數(shù)就可以相加;而對于加法,不僅底數(shù)相同,還要求指數(shù)相同才能相加;
二、冪的乘方與積的乘方
三、同底數(shù)冪的除法
(1)運(yùn)用法則的前提是底數(shù)相同,只有底數(shù)相同,才能用此法則
(2)底數(shù)可以是具體的數(shù),也可以是單項(xiàng)式或多項(xiàng)式
(3)指數(shù)相減指的是被除式的指數(shù)減去除式的指數(shù),要求差不為負(fù)
四、整式的乘法
1、單項(xiàng)式的概念:由數(shù)與字母的乘積構(gòu)成的代數(shù)式叫做單項(xiàng)式。單獨(dú)的一個數(shù)或一個字母也是單項(xiàng)式。單項(xiàng)式的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù),所有字母指數(shù)和叫單項(xiàng)式的次數(shù)。
如:bca22-的系數(shù)為2-,次數(shù)為4,單獨(dú)的一個非零數(shù)的次數(shù)是0。
2、多項(xiàng)式:幾個單項(xiàng)式的和叫做多項(xiàng)式。多項(xiàng)式中每個單項(xiàng)式叫多項(xiàng)式的項(xiàng),次數(shù)項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù)。
五、平方差公式
表達(dá)式:(a+b)(a-b)=a^2-b^2,兩個數(shù)的和與這兩個數(shù)差的積,等于這兩個數(shù)的平方差,這個公式就叫做乘法的平方差公式
公式運(yùn)用
可用于某些分母含有根號的分式:
1/(3-4倍根號2)化簡:
六、完全平方公式
完全平方公式中常見錯誤有:
①漏下了一次項(xiàng)
②混淆公式
③運(yùn)算結(jié)果中符號錯誤
④變式應(yīng)用難于掌握。
七、整式的除法
1、單項(xiàng)式的除法法則
單項(xiàng)式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
注意:首先確定結(jié)果的系數(shù)(即系數(shù)相除),然后同底數(shù)冪相除,如果只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式。
七年級下冊數(shù)學(xué)復(fù)習(xí)資料
【相似變換】
※1、如果選用同一個長度單位量得兩條線段AB,CD的長度分別是m、n,那么就說這兩條線段的比AB:CD=m:n,或?qū)懗?
※2、四條線段a、b、c、d中,如果a與b的比等于c與d的比,即,那么這四條線段a、b、c、d叫做成比例線段,簡稱比例線段.
※3、注意點(diǎn):
①a:b=k,說明a是b的k倍;
②由于線段a、b的長度都是正數(shù),所以k是正數(shù);
③比與所選線段的長度單位無關(guān),求出時兩條線段的長度單位要一致;
④除了a=b之外,a:b≠b:a,與互為倒數(shù);
【平移變換】
(1)圖形平移前后的形狀和大小沒有變化,只是位置發(fā)生變化;
(2)圖形平移后,對應(yīng)點(diǎn)連成的線段平行且相等(或在同一直線上)
(3)多次平移相當(dāng)于一次平移。
(4)多次對稱后的圖形等于平移后的圖形。
(5)平移是由方向,距離決定的。
(6)經(jīng)過平移,對應(yīng)線段平行(或共線)且相等,對應(yīng)角相等,對應(yīng)點(diǎn)所連接的線段平行且相等。
這種將圖形上的所有點(diǎn)都按照某個方向作相同距離的位置移動,叫做圖形的平移運(yùn)動,簡稱為平移
七年級數(shù)學(xué)知識點(diǎn)
一元一次方程
一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)項(xiàng)的系數(shù)不是零的整式方程是一元一次方程.
一元一次方程的標(biāo)準(zhǔn)形式: ax+b=0(x是未知數(shù),a、b是已知數(shù),且a≠0).
一元一次方程的最簡形式: ax=b(x是未知數(shù),a、b是已知數(shù),且a≠0).
一元一次方程解法的一般步驟: 整理方程 …… 去分母 …… 去括號 …… 移項(xiàng) …… 合并同類項(xiàng) …… 系數(shù)化為1 …… (檢驗(yàn)方程的解).
列方程解應(yīng)用題的常用公式:
(1)行程問題:距離=速度·時間;
(2)工程問題:工作量=工效·工時;
(3)比率問題:部分=全體·比率;
(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速度;
(5)商品價格問題:售價=定價·折·0.1 ,利潤=售價-成本;
(6)周長、面積、體積問題:C圓=2πR,S圓=πR2,C長方形=2(a+b),S長方形=ab, C正方形=4a,S正方形=a2,S環(huán)形=π(R2-r2),V長方體=abc ,V正方體=a3,V圓柱=πR2h ,V圓錐=1/3πR2h.
篇16:初一數(shù)學(xué)下冊知識點(diǎn)
一、知識網(wǎng)絡(luò)結(jié)構(gòu)
二、知識要點(diǎn)
1、有序數(shù)對:有順序的兩個數(shù)a與b組成的數(shù)對叫做有序數(shù)對,記做(a,b) 。
2、平面直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。
3、橫軸、縱軸、原點(diǎn):水平的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
4、坐標(biāo):對于平面內(nèi)任一點(diǎn)P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點(diǎn)P的橫坐標(biāo)和縱坐標(biāo),記作P(a,b)。
5、象限:兩條坐標(biāo)軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標(biāo)軸上的點(diǎn)不在任何一個象限內(nèi)。
6、各象限點(diǎn)的坐標(biāo)特點(diǎn)①第一象限的點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0;②第二象限的點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0;③第三象限的點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0;④第四象限的點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0。
7、坐標(biāo)軸上點(diǎn)的坐標(biāo)特點(diǎn)①x軸正半軸上的點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0;②x軸負(fù)半軸上的點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0;③y軸正半軸上的點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0;④y軸負(fù)半軸上的點(diǎn):橫坐
標(biāo) 0,縱坐標(biāo) 0;⑤坐標(biāo)原點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0。(填“>”、“<”或“=”)
8、點(diǎn)P(a,b)到x軸的距離是 |b| ,到y(tǒng)軸的距離是 |a| 。
9、對稱點(diǎn)的坐標(biāo)特點(diǎn)①關(guān)于x軸對稱的兩個點(diǎn),橫坐標(biāo) 相等,縱坐標(biāo) 互為相反數(shù);②關(guān)于y軸對稱的兩個點(diǎn),縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù);③關(guān)于原點(diǎn)對稱的兩個點(diǎn),橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù)。
10、點(diǎn)P(2,3) 到x軸的距離是 ; 到y(tǒng)軸的距離是 ; 點(diǎn)P(2,3) 關(guān)于x軸對稱的點(diǎn)坐標(biāo)為( , );點(diǎn)P(2,3) 關(guān)于y軸對稱的點(diǎn)坐標(biāo)為( , )。
11、如果兩個點(diǎn)的 橫坐標(biāo) 相同,則過這兩點(diǎn)的直線與y軸平行、與x軸垂直 ;如果兩點(diǎn)的 縱坐標(biāo)相同,則過這兩點(diǎn)的直線與x軸平行、與y軸垂直 。如果點(diǎn)P(2,3)、Q(2,6),這兩點(diǎn)橫坐標(biāo)相同,則PQ∥y軸,PQ⊥x軸;如果點(diǎn)P(-1,2)、Q(4,2),這兩點(diǎn)縱坐標(biāo)相同,則PQ∥x軸,PQ⊥y軸。
12、平行于x軸的直線上的點(diǎn)的縱坐標(biāo)相同;平行于y軸的直線上的點(diǎn)的橫坐標(biāo)相同;在一、三象限角平分線上的點(diǎn)的橫坐標(biāo)與縱坐標(biāo)相同;在二、四象限角平分線上的點(diǎn)的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù)。如果點(diǎn)P(a,b) 在一、三象限角平分線上,則P點(diǎn)的橫坐標(biāo)與縱坐標(biāo)相同,即 a = b ;如果點(diǎn)P(a,b) 在二、四象限角平分線上,則P點(diǎn)的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù),即 a = -b 。
13、表示一個點(diǎn)(或物體)的位置的方法:一是準(zhǔn)確恰當(dāng)?shù)亟⑵矫嬷苯亲鴺?biāo)系;二是正確寫出物體或某地所在的點(diǎn)的坐標(biāo)。選擇的坐標(biāo)原點(diǎn)不同,建立的平面直角坐標(biāo)系也不同,得到的同一個點(diǎn)的坐標(biāo)也不同。
14、圖形的平移可以轉(zhuǎn)化為點(diǎn)的平移。坐標(biāo)平移規(guī)律:①左右平移時,橫坐標(biāo)進(jìn)行加減,縱坐標(biāo)不變;②上下平移時,橫坐標(biāo)不變,縱坐標(biāo)進(jìn)行加減;③坐標(biāo)進(jìn)行加減時,按“左減右加、上加下減”的規(guī)律進(jìn)行。如將點(diǎn)P(2,3)向左平移2個單位后得到的點(diǎn)的坐標(biāo)為( , );將點(diǎn)P(2,3)向右平移2個單位后得到的點(diǎn)的坐標(biāo)為( , );將點(diǎn)P(2,3)向上平移2個單位后得到的點(diǎn)的坐標(biāo)為( , );將點(diǎn)P(2,3)向下平移2個單位后得到的點(diǎn)的坐標(biāo)為( , );將點(diǎn)P(2,3)先向左平移3個單位后再向上平移5個單位后得到的點(diǎn)的坐標(biāo)為( , );將點(diǎn)P(2,3)先向左平移3個單位后再向下平移5個單位后得到的點(diǎn)的坐標(biāo)為( , );將點(diǎn)P(2,3)先向右平移3個單位后再向上平移5個單位后得到的點(diǎn)的坐標(biāo)為( , );將點(diǎn)P(2,3)先向右平移3個單位后再向下平移5個單位后得到的點(diǎn)的坐標(biāo)為( , )。
初一數(shù)學(xué)學(xué)習(xí)方法
一、多看
主要是指認(rèn)真閱讀數(shù)學(xué)課本。許多同學(xué)沒有養(yǎng)成這個習(xí)慣,把課本當(dāng)成練習(xí)冊;也有一部分同學(xué)不知怎么閱讀,這是他們學(xué)不好數(shù)學(xué)的主要原因之一。一般地,閱讀可以分以下三個層次:
1.課前預(yù)習(xí)閱讀。預(yù)習(xí)課文時,要準(zhǔn)備一張紙、一支筆,將課本中的關(guān)鍵詞語、產(chǎn)生的疑問和需要思考的問題隨手記下,對定義、公理、公式、法則等,可以在紙上進(jìn)行簡單的復(fù)述,推理。重點(diǎn)知識可在課本上批、劃、圈、點(diǎn)。這樣做,不但有助于理解課文,還能幫助我們在課堂上集中精力聽講,有重點(diǎn)地聽講。
2.課堂閱讀。預(yù)習(xí)時,我們只對所要學(xué)的教材內(nèi)容有了一個大概的了解,不一定都已深透理解和消化吸收,因此有必要對預(yù)習(xí)時所做的標(biāo)記和批注,結(jié)合老師的講授,進(jìn)一步閱讀課文,從而掌握重點(diǎn)、關(guān)鍵,解決預(yù)習(xí)中的疑難問題。
3.課后復(fù)習(xí)閱讀。課后復(fù)習(xí)是課堂學(xué)習(xí)的延伸,既可解決在預(yù)習(xí)和課堂中仍然沒有解決的問題,又能使知識系統(tǒng)化,加深和鞏固對課堂學(xué)習(xí)內(nèi)容的理解和記憶。一節(jié)課后,必須先閱讀課本,然后再做作業(yè);一個單元后,應(yīng)全面閱讀課本,對本單元的內(nèi)容前后聯(lián)系起來,進(jìn)行綜合概括,寫出知識小結(jié),進(jìn)行查缺補(bǔ)漏。
二、多想
主要是指養(yǎng)成思考的習(xí)慣,學(xué)會思考的方法。獨(dú)立思考是學(xué)習(xí)數(shù)學(xué)必須具備的能力。
同學(xué)們在學(xué)習(xí)時,要邊聽(課)邊想,邊看(書)邊想,邊做(題)邊想,通過自己積極思考,深刻理解數(shù)學(xué)知識,歸納總結(jié)數(shù)學(xué)規(guī)律,靈活解決數(shù)學(xué)問題,這樣才能把老師講的、課本上寫的變成自己的知識。
三、多做
主要是指做習(xí)題,學(xué)數(shù)學(xué)一定要做習(xí)題,并且應(yīng)該適當(dāng)?shù)囟嘧鲂W隽?xí)題的目的首先是熟練和鞏固學(xué)習(xí)的知識;其次是初步啟發(fā)靈活應(yīng)用知識和培養(yǎng)獨(dú)立思考的能力;第三是融會貫通,把不同內(nèi)容的數(shù)學(xué)知識溝通起來。在做習(xí)題時,要認(rèn)真審題,認(rèn)真思考,應(yīng)該用什么方法做?能否有簡便解法?做到邊做邊思考邊總結(jié),通過練習(xí)加深對知識的理解。
四、多問
是指在學(xué)習(xí)過程中要善于發(fā)現(xiàn)和提出疑問,這是衡量一個學(xué)生學(xué)習(xí)是否有進(jìn)步的重要標(biāo)志之一。有經(jīng)驗(yàn)的老師認(rèn)為:能夠發(fā)現(xiàn)和提出疑問的學(xué)生才更有希望獲得學(xué)習(xí)的成功;反之,那種一問三不知,自己又提不出任何問題的學(xué)生,是無法學(xué)好數(shù)學(xué)的。那么,怎樣才能發(fā)現(xiàn)和提出問題呢?第一,要深入觀察,逐步培養(yǎng)自己敏銳的觀察能力;第二,要肯動腦筋,不愿意動腦筋,不去思考,當(dāng)然發(fā)現(xiàn)不了什么問題,也提不出疑問。發(fā)現(xiàn)問題后,經(jīng)過自己的獨(dú)立思考,問題仍得不到解決時,應(yīng)當(dāng)虛心向別人請教,向老師、同學(xué)、家長,向一切在這個問題上比自己強(qiáng)的人請教。不要有虛榮心,不要怕別人看不起。只有善于提出問題、虛心學(xué)習(xí)的人,才有可能成為真正的學(xué)習(xí)上的強(qiáng)者。
篇17:初一下冊數(shù)學(xué)知識點(diǎn)
一、互余、互補(bǔ)、對頂角
1、相加等于90°的兩個角稱這兩個角互余。 性質(zhì):同角(或等角)的余角相等。
2、相加等于180°的兩個角稱這兩個角互補(bǔ)。 性質(zhì):同角(或等角)的補(bǔ)角相等。
3、兩條直線相交,有公共頂點(diǎn)但沒有公共邊的兩個角叫做對頂角;或者一個角的反相延長線與這個角是對頂角。 對頂角的性質(zhì):對頂角相等。
4、兩條直線相交,有公共頂點(diǎn)且有一條公共邊的兩個角互為鄰補(bǔ)角。 (相鄰且互補(bǔ))
二、三線八角: 兩直線被第三條直線所截
①在兩直線的相同位置上,在第三條直線的同側(cè)(旁)的兩個角叫做同位角。
②在兩直線之間(內(nèi)部),在第三條直線的兩側(cè)(旁)的兩個角叫做內(nèi)錯角。
③在兩直線之間(內(nèi)部),在第三條直線的同側(cè)(旁)的兩個角叫做同旁內(nèi)角。
三、平行線的判定
①同位角相等
②內(nèi)錯角相等 兩直線平行
③同旁內(nèi)角互補(bǔ)
四、平行線的性質(zhì)
①兩直線平行,同位角相等。 ②兩直線平行,內(nèi)錯角相等。 ③兩直線平行,同旁內(nèi)角互補(bǔ)。
五、尺規(guī)作圖(用圓規(guī)和直尺作圖)
①作一條線段等于已知線段。 ②作一個角等于已知角。
篇18:初一下冊數(shù)學(xué)知識點(diǎn)
1.不等式:用符號“”,“≤”,“≥”表示大小關(guān)系的式子叫做不等式。
2.不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的大于號、小于號“>”,“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)“≥”,“≤”連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個含未知數(shù)的不等式有無數(shù)個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達(dá)出來,例如:x-1≤2的解集是x≤3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無限多個解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)F(x)同解。
(2)如果不等式F(x)< G(x)的定義域被解析式H(x)的定義域所包含,那么不等式 F(x)< G(x)與不等式H(x)+F(x)
(3)如果不等式F(x)0,那么不等式F(x)< G(x)與不等式H(x)F(x)0,那么不等式F(x)H(x)G(x)同解。
7.不等式的性質(zhì):
(1)如果x>y,那么yy;(對稱性)
(2)如果x>y,y>z;那么x>z;(傳遞性)
(3)如果x>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法則)
(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
(6)如果x>y,m>n,那么x+m>y+n(充分不必要條件)
(7)如果x>y>0,m>n>0,那么xm>yn
(8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數(shù))
8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般順序:
(1)去分母 (運(yùn)用不等式性質(zhì)2、3)
(2)去括號
(3)移項(xiàng) (運(yùn)用不等式性質(zhì)1)
(4)合并同類項(xiàng)
(5)將未知數(shù)的系數(shù)化為1 (運(yùn)用不等式性質(zhì)2、3)
(6)有些時候需要在數(shù)軸上表示不等式的解集
10. 一元一次不等式與一次函數(shù)的綜合運(yùn)用:
一般先求出函數(shù)表達(dá)式,再化簡不等式求解。
初一數(shù)學(xué)復(fù)習(xí)方法
考試與作業(yè)邏輯不同:
我們的考試不同于作業(yè),有些孩子作業(yè)寫的還可以,準(zhǔn)確率挺高的,但是考試成績不理想。比如學(xué)校上完課,回家就寫當(dāng)天的作業(yè),但是考試不一樣,它是階段性的、綜合性的;再比如寫作業(yè),可以看資料,不會的可以請教同學(xué),但是考試就得靠自己;還有寫作業(yè)時格式不一定規(guī)范,不一定符合標(biāo)準(zhǔn),但是考試?yán)蠋煏蠛車?yán)格;另外有些孩子考試比較焦慮,考試之前,爸爸媽媽給孩子加油鼓勁,反倒孩子考不好,有些孩子甚至在考試前后一定要上廁所,排解壓力,甚至影響到考試成績。
那具體涉及到數(shù)學(xué)的復(fù)習(xí),我以北師大版為例,可以分4個步驟:
復(fù)習(xí)方法總結(jié)
1回歸書本,梳理章節(jié)概念公式、性質(zhì)定理等
就像蓋房子,房子的地基是否扎實(shí)穩(wěn)固。比如我們在復(fù)習(xí)課中,要求孩子們默寫公式等,記憶單項(xiàng)式、多項(xiàng)式、整式的概念,以及冪的運(yùn)算、整式乘除的法則,而且一定要記住平方差和完全平方公式以及變形。有些孩子能夠背下完全平方公式,但是一旦用的時候,就偏偏不用,因?yàn)椴粔蚴炀殻鲁鲥e,所以就用最復(fù)雜的公式推導(dǎo)一遍,費(fèi)時費(fèi)力,還總錯,而且重要的公式更加生疏。
比如知識點(diǎn)填空:
知識點(diǎn)填空
我們的孩子在學(xué)校大題普遍做的多,考試也能拿到一些分?jǐn)?shù),但是選擇填空老錯,考完試下來一看,錯就錯在概念不清。
比如平行線是怎么定義,性質(zhì)定理有幾條,判定定理有幾條?他們之間有什么聯(lián)系和區(qū)別?在這一章中,哪些地方一定要加“同一平面內(nèi)”這5個字?家長們可以讓孩子找找看,捋一捋。
再比如說,三角形一章,涉及到三邊關(guān)系,角的關(guān)系,以及三角形的重要線段和它們的性質(zhì),等腰等邊三角形的性質(zhì),這些一定是期末選擇題的備選項(xiàng)。
還有全等的幾種證明方法,常見的輔助線做法這是幾何證明題的思路。
2題型突破,對各章節(jié)常見的熱點(diǎn)問題歸納練習(xí)。
我們的數(shù)學(xué)、物理這些理科都是要做題型的,而不僅僅是做題,一定要明白思路。
大多數(shù)孩子要考的題型和難度,學(xué)校每天的作業(yè)以及每周的考試卷,你都必須分析一下,對題型歸類,你可以用不同的筆標(biāo)記一下,比如第2題和第8題是一類題,是化簡求值還是公式的變形應(yīng)用?通過這樣一遍的分析,孩子們都會發(fā)現(xiàn),其實(shí)考來考去,就是那幾種題型反復(fù)的出,反復(fù)的練。這是非常高效的學(xué)習(xí)方法。
3、熟悉套路、模型
平行線常見的模型:鉛筆模型、豬蹄模型,比如我經(jīng)常和大家說的,遇見拐點(diǎn),就做平行線。
三角形倒角常見模型:8字型、飛鏢型、折角型。
三角形全等模型:角平分線的性質(zhì)模型,等腰直角三角形模型,三垂直模型,翻折(對稱)。
學(xué)好這些模型相等于我們是拿著工具箱考試,效率很高,比起其他同學(xué),省去了推導(dǎo)的過程,速度又快,又準(zhǔn)確。當(dāng)然前提要掌握好基礎(chǔ)內(nèi)容,不要本末倒置。
如果孩子們能把前面的步驟都做好了,基本知識點(diǎn),題型都掌握了,計(jì)算也不會出錯,那你們考試一定沒有問題,除了有些學(xué)校本來要求考很難,比如壓軸題,不在于做的多,而是在精練,你做完之后不斷的復(fù)盤,用自己的語言說出思路來,找找看里面的邏輯關(guān)系。
4、堅(jiān)持改錯題
把整個學(xué)期的試卷裝訂在一起,每周花半天的時間,訂正錯題,不會的標(biāo)記星號,問老師問同學(xué),直到會了為止,下周繼續(xù)改,看自己是否真的懂了,對于錯題,就像駱駝吃草一樣,不停地咀嚼,錯題也需要孩子們不斷反復(fù)的看思路,才能在考試的時候避免在同類型的題上反復(fù)錯。
篇19:初一數(shù)學(xué)下冊知識點(diǎn)
初一數(shù)學(xué)學(xué)習(xí)方法
初一數(shù)學(xué)下冊知識點(diǎn)
相交線與平行線
一、知識網(wǎng)絡(luò)結(jié)構(gòu)
二、知識要點(diǎn)
1、在同一平面內(nèi),兩條直線的位置關(guān)系有 兩 種: 相交 和平行 , 垂直 是相交的一種特殊情況。
2、在同一平面內(nèi),不相交的兩條直線叫平行線 。如果兩條直線只有 一個 公共點(diǎn),稱這兩條直線相交;如果兩條直線 沒有 公共點(diǎn),稱這兩條直線平行。
3、兩條直線相交所構(gòu)成的四個角中,有 公共頂點(diǎn) 且有 一條公共邊 的兩個角是
鄰補(bǔ)角。鄰補(bǔ)角的性質(zhì): 鄰補(bǔ)角互補(bǔ) 。如圖1所示, 與 互為鄰補(bǔ)角,
與 互為鄰補(bǔ)角。 + = 180°; + = 180°; + = 180°;
+ = 180°。
4、兩條直線相交所構(gòu)成的四個角中,一個角的兩邊分別是另一個角的兩邊的 反向延長線 ,這樣的兩個角互為 對頂角 。對頂角的性質(zhì):對頂角相等。如圖1所示, 與 互為對頂角。 = ;
= 。
5、兩條直線相交所成的角中,如果有一個是 直角或90°時,稱這兩條直線互相垂直,
其中一條叫做另一條的垂線。如圖2所示,當(dāng) = 90°時, ⊥ 。
垂線的性質(zhì):
性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。
性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。
性質(zhì)3:如圖2所示,當(dāng) a ⊥ b 時, = = = = 90°。
點(diǎn)到直線的距離:直線外一點(diǎn)到這條直線的垂線段的長度叫點(diǎn)到直線的距離。
6、同位角、內(nèi)錯角、同旁內(nèi)角基本特征:
①在兩條直線(被截線)的 同一方 ,都在第三條直線(截線)的 同一側(cè) ,這樣
的兩個角叫 同位角 。圖3中,共有 對同位角: 與 是同位角;
與 是同位角; 與 是同位角; 與 是同位角。
②在兩條直線(被截線) 之間 ,并且在第三條直線(截線)的 兩側(cè) ,這樣的兩個角叫 內(nèi)錯角 。圖3中,共有 對內(nèi)錯角: 與 是內(nèi)錯角; 與 是內(nèi)錯角。
③在兩條直線(被截線)的 之間 ,都在第三條直線(截線)的 同一旁 ,這樣的兩個角叫 同旁內(nèi)角 。圖3中,共有 對同旁內(nèi)角: 與 是同旁內(nèi)角; 與 是同旁內(nèi)角。
7、平行公理:經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行。
平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。
平行線的性質(zhì):
性質(zhì)1:兩直線平行,同位角相等。如圖4所示,如果a∥b,
則 = ; = ; = ; = 。
性質(zhì)2:兩直線平行,內(nèi)錯角相等。如圖4所示,如果a∥b,則 = ; = 。
性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。如圖4所示,如果a∥b,則 + = 180°;
+ = 180°。
性質(zhì)4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
8、平行線的判定:
判定1:同位角相等,兩直線平行。如圖5所示,如果 =
或 = 或 = 或 = ,則a∥b。
判定2:內(nèi)錯角相等,兩直線平行。如圖5所示,如果 = 或 = ,則a∥b 。
判定3:同旁內(nèi)角互補(bǔ),兩直線平行。如圖5所示,如果 + = 180°;
+ = 180°,則a∥b。
判定4:平行于同一條直線的兩條直線互相平行。如果a∥b,a∥c,則 ∥ 。
9、判斷一件事情的語句叫命題。命題由 題設(shè) 和 結(jié)論 兩部分組成,有 真命題 和 假命題 之分。如果題設(shè)成立,那么結(jié)論 一定 成立,這樣的命題叫 真命題 ;如果題設(shè)成立,那么結(jié)論 不一定 成立,這樣的命題叫假命題。真命題的正確性是經(jīng)過推理證實(shí)的,這樣的真命題叫定理,它可以作為繼續(xù)推理的依據(jù)。
10、平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移變換,簡稱平移。
平移后,新圖形與原圖形的 形狀 和 大小 完全相同。平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到的,這樣的兩個點(diǎn)叫做對應(yīng)點(diǎn)。
平移性質(zhì):平移前后兩個圖形中①對應(yīng)點(diǎn)的連線平行且相等;②對應(yīng)線段相等;③對應(yīng)角相等。
返回目錄
初一數(shù)學(xué)下冊知識點(diǎn):實(shí)數(shù)
【知識點(diǎn)一】實(shí)數(shù)的分類
1、按定義分類: 2.按性質(zhì)符號分類:
注:0既不是正數(shù)也不是負(fù)數(shù).
【知識點(diǎn)二】實(shí)數(shù)的相關(guān)概念
1.相反數(shù)
(1)代數(shù)意義:只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù).0的相反數(shù)是0.
(2)幾何意義:在數(shù)軸上原點(diǎn)的兩側(cè),與原點(diǎn)距離相等的兩個點(diǎn)表示的兩個數(shù)互為相反數(shù),或數(shù)軸上,互為相反數(shù)的兩個數(shù)所對應(yīng)的點(diǎn)關(guān)于原點(diǎn)對稱.
(3)互為相反數(shù)的兩個數(shù)之和等于0.a、b互為相反數(shù) a+b=0.
2.絕對值 |a|≥0.
3.倒數(shù) (1)0沒有倒數(shù) (2)乘積是1的兩個數(shù)互為倒數(shù).a、b互為倒數(shù) .
4.平方根
(1)如果一個數(shù)的平方等于a,這個數(shù)就叫做a的平方根.一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負(fù)數(shù)沒有平方根.a(a≥0)的平方根記作.
(2)一個正數(shù)a的正的平方根,叫做a的算術(shù)平方根.a(a≥0)的算術(shù)平方根記作 .
5.立方根
如果x3=a,那么x叫做a的立方根.一個正數(shù)有一個正的立方根;一個負(fù)數(shù)有一個負(fù)的立方根;零的立方根是零.
【知識點(diǎn)三】實(shí)數(shù)與數(shù)軸
數(shù)軸定義: 規(guī)定了原點(diǎn),正方向和單位長度的直線叫做數(shù)軸,數(shù)軸的三要素缺一不可.
【知識點(diǎn)四】實(shí)數(shù)大小的比較
1.對于數(shù)軸上的任意兩個點(diǎn),靠右邊的點(diǎn)所表示的數(shù)較大.
2.正數(shù)都大于0,負(fù)數(shù)都小于0,兩個正數(shù),絕對值較大的那個正數(shù)大;兩個負(fù)數(shù);絕對值大的反而小.
3.無理數(shù)的比較大小:
【知識點(diǎn)五】實(shí)數(shù)的運(yùn)算
1.加法
同號兩數(shù)相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;互為相反數(shù)的兩個數(shù)相加得0;一個數(shù)同0相加,仍得這個數(shù).
2.減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù).
3.乘法
幾個非零實(shí)數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正;當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù).幾個數(shù)相乘,有一個因數(shù)為0,積就為0.
4.除法
除以一個數(shù),等于乘上這個數(shù)的倒數(shù).兩個數(shù)相除,同號得正,異號得負(fù),并把絕對值相除.0除以任何一個不等于0的數(shù)都得0.
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數(shù)的任何次冪是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù).
(2)正數(shù)和0可以開平方,負(fù)數(shù)不能開平方;正數(shù)、負(fù)數(shù)和0都可以開立方.
(3)零指數(shù)與負(fù)指數(shù)
【知識點(diǎn)六】有效數(shù)字和科學(xué)記數(shù)法
1.有效數(shù)字:
一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位為止,所有的數(shù)字,都叫做這個近似數(shù)的有效數(shù)字.
2.科學(xué)記數(shù)法:
把一個數(shù)用 (1≤ <10,n為整數(shù))的形式記數(shù)的方法叫科學(xué)記數(shù)法.
平面直角坐標(biāo)系
一、知識網(wǎng)絡(luò)結(jié)構(gòu)
二、知識要點(diǎn)
1、有序數(shù)對:有順序的兩個數(shù)a與b組成的數(shù)對叫做有序數(shù)對,記做(a,b) 。
2、平面直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。
3、橫軸、縱軸、原點(diǎn):水平的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。
4、坐標(biāo):對于平面內(nèi)任一點(diǎn)P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點(diǎn)P的橫坐標(biāo)和縱坐標(biāo),記作P(a,b)。
5、象限:兩條坐標(biāo)軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向依次叫第二象限、第三象限、第四象限。坐標(biāo)軸上的點(diǎn)不在任何一個象限內(nèi)。
6、各象限點(diǎn)的坐標(biāo)特點(diǎn)①第一象限的點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0;②第二象限的點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0;③第三象限的點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0;④第四象限的點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0。
7、坐標(biāo)軸上點(diǎn)的坐標(biāo)特點(diǎn)①x軸正半軸上的點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0;②x軸負(fù)半軸上的點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0;③y軸正半軸上的點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0;④y軸負(fù)半軸上的點(diǎn):橫坐
標(biāo) 0,縱坐標(biāo) 0;⑤坐標(biāo)原點(diǎn):橫坐標(biāo) 0,縱坐標(biāo) 0。(填“>”、“<”或“=”)
8、點(diǎn)P(a,b)到x軸的距離是 |b| ,到y(tǒng)軸的距離是 |a| 。
9、對稱點(diǎn)的坐標(biāo)特點(diǎn)①關(guān)于x軸對稱的兩個點(diǎn),橫坐標(biāo) 相等,縱坐標(biāo) 互為相反數(shù);②關(guān)于y軸對稱的兩個點(diǎn),縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù);③關(guān)于原點(diǎn)對稱的兩個點(diǎn),橫坐標(biāo)、縱坐標(biāo)分別互為相反數(shù)。
10、點(diǎn)P(2,3) 到x軸的距離是 ; 到y(tǒng)軸的距離是 ; 點(diǎn)P(2,3) 關(guān)于x軸對稱的點(diǎn)坐標(biāo)為( , );點(diǎn)P(2,3) 關(guān)于y軸對稱的點(diǎn)坐標(biāo)為( , )。
11、如果兩個點(diǎn)的 橫坐標(biāo) 相同,則過這兩點(diǎn)的直線與y軸平行、與x軸垂直 ;如果兩點(diǎn)的 縱坐標(biāo)相同,則過這兩點(diǎn)的直線與x軸平行、與y軸垂直 。如果點(diǎn)P(2,3)、Q(2,6),這兩點(diǎn)橫坐標(biāo)相同,則PQ∥y軸,PQ⊥x軸;如果點(diǎn)P(-1,2)、Q(4,2),這兩點(diǎn)縱坐標(biāo)相同,則PQ∥x軸,PQ⊥y軸。
12、平行于x軸的直線上的點(diǎn)的縱坐標(biāo)相同;平行于y軸的直線上的點(diǎn)的橫坐標(biāo)相同;在一、三象限角平分線上的點(diǎn)的橫坐標(biāo)與縱坐標(biāo)相同;在二、四象限角平分線上的點(diǎn)的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù)。如果點(diǎn)P(a,b) 在一、三象限角平分線上,則P點(diǎn)的橫坐標(biāo)與縱坐標(biāo)相同,即 a = b ;如果點(diǎn)P(a,b) 在二、四象限角平分線上,則P點(diǎn)的橫坐標(biāo)與縱坐標(biāo)互為相反數(shù),即 a = -b 。
13、表示一個點(diǎn)(或物體)的位置的方法:一是準(zhǔn)確恰當(dāng)?shù)亟⑵矫嬷苯亲鴺?biāo)系;二是正確寫出物體或某地所在的點(diǎn)的坐標(biāo)。選擇的坐標(biāo)原點(diǎn)不同,建立的平面直角坐標(biāo)系也不同,得到的同一個點(diǎn)的坐標(biāo)也不同。
14、圖形的平移可以轉(zhuǎn)化為點(diǎn)的平移。坐標(biāo)平移規(guī)律:①左右平移時,橫坐標(biāo)進(jìn)行加減,縱坐標(biāo)不變;②上下平移時,橫坐標(biāo)不變,縱坐標(biāo)進(jìn)行加減;③坐標(biāo)進(jìn)行加減時,按“左減右加、上加下減”的規(guī)律進(jìn)行。如將點(diǎn)P(2,3)向左平移2個單位后得到的點(diǎn)的坐標(biāo)為( , );將點(diǎn)P(2,3)向右平移2個單位后得到的點(diǎn)的坐標(biāo)為( , );將點(diǎn)P(2,3)向上平移2個單位后得到的點(diǎn)的坐標(biāo)為( , );將點(diǎn)P(2,3)向下平移2個單位后得到的點(diǎn)的坐標(biāo)為( , );將點(diǎn)P(2,3)先向左平移3個單位后再向上平移5個單位后得到的點(diǎn)的坐標(biāo)為( , );將點(diǎn)P(2,3)先向左平移3個單位后再向下平移5個單位后得到的點(diǎn)的坐標(biāo)為( , );將點(diǎn)P(2,3)先向右平移3個單位后再向上平移5個單位后得到的點(diǎn)的坐標(biāo)為( , );將點(diǎn)P(2,3)先向右平移3個單位后再向下平移5個單位后得到的點(diǎn)的坐標(biāo)為( , )。
返回目錄
初一數(shù)學(xué)學(xué)習(xí)方法
一、多看
主要是指認(rèn)真閱讀數(shù)學(xué)課本。許多同學(xué)沒有養(yǎng)成這個習(xí)慣,把課本當(dāng)成練習(xí)冊;也有一部分同學(xué)不知怎么閱讀,這是他們學(xué)不好數(shù)學(xué)的主要原因之一。一般地,閱讀可以分以下三個層次:
1.課前預(yù)習(xí)閱讀。預(yù)習(xí)課文時,要準(zhǔn)備一張紙、一支筆,將課本中的關(guān)鍵詞語、產(chǎn)生的疑問和需要思考的問題隨手記下,對定義、公理、公式、法則等,可以在紙上進(jìn)行簡單的復(fù)述,推理。重點(diǎn)知識可在課本上批、劃、圈、點(diǎn)。這樣做,不但有助于理解課文,還能幫助我們在課堂上集中精力聽講,有重點(diǎn)地聽講。
2.課堂閱讀。預(yù)習(xí)時,我們只對所要學(xué)的教材內(nèi)容有了一個大概的了解,不一定都已深透理解和消化吸收,因此有必要對預(yù)習(xí)時所做的標(biāo)記和批注,結(jié)合老師的講授,進(jìn)一步閱讀課文,從而掌握重點(diǎn)、關(guān)鍵,解決預(yù)習(xí)中的疑難問題。
3.課后復(fù)習(xí)閱讀。課后復(fù)習(xí)是課堂學(xué)習(xí)的延伸,既可解決在預(yù)習(xí)和課堂中仍然沒有解決的問題,又能使知識系統(tǒng)化,加深和鞏固對課堂學(xué)習(xí)內(nèi)容的理解和記憶。一節(jié)課后,必須先閱讀課本,然后再做作業(yè);一個單元后,應(yīng)全面閱讀課本,對本單元的內(nèi)容前后聯(lián)系起來,進(jìn)行綜合概括,寫出知識小結(jié),進(jìn)行查缺補(bǔ)漏。
二、多想
主要是指養(yǎng)成思考的習(xí)慣,學(xué)會思考的方法。獨(dú)立思考是學(xué)習(xí)數(shù)學(xué)必須具備的能力。
同學(xué)們在學(xué)習(xí)時,要邊聽(課)邊想,邊看(書)邊想,邊做(題)邊想,通過自己積極思考,深刻理解數(shù)學(xué)知識,歸納總結(jié)數(shù)學(xué)規(guī)律,靈活解決數(shù)學(xué)問題,這樣才能把老師講的、課本上寫的變成自己的知識。
三、多做
主要是指做習(xí)題,學(xué)數(shù)學(xué)一定要做習(xí)題,并且應(yīng)該適當(dāng)?shù)囟嘧鲂W隽?xí)題的目的首先是熟練和鞏固學(xué)習(xí)的知識;其次是初步啟發(fā)靈活應(yīng)用知識和培養(yǎng)獨(dú)立思考的能力;第三是融會貫通,把不同內(nèi)容的數(shù)學(xué)知識溝通起來。在做習(xí)題時,要認(rèn)真審題,認(rèn)真思考,應(yīng)該用什么方法做?能否有簡便解法?做到邊做邊思考邊總結(jié),通過練習(xí)加深對知識的理解。
四、多問
是指在學(xué)習(xí)過程中要善于發(fā)現(xiàn)和提出疑問,這是衡量一個學(xué)生學(xué)習(xí)是否有進(jìn)步的重要標(biāo)志之一。有經(jīng)驗(yàn)的老師認(rèn)為:能夠發(fā)現(xiàn)和提出疑問的學(xué)生才更有希望獲得學(xué)習(xí)的成功;反之,那種一問三不知,自己又提不出任何問題的學(xué)生,是無法學(xué)好數(shù)學(xué)的。那么,怎樣才能發(fā)現(xiàn)和提出問題呢?第一,要深入觀察,逐步培養(yǎng)自己敏銳的觀察能力;第二,要肯動腦筋,不愿意動腦筋,不去思考,當(dāng)然發(fā)現(xiàn)不了什么問題,也提不出疑問。發(fā)現(xiàn)問題后,經(jīng)過自己的獨(dú)立思考,問題仍得不到解決時,應(yīng)當(dāng)虛心向別人請教,向老師、同學(xué)、家長,向一切在這個問題上比自己強(qiáng)的人請教。不要有虛榮心,不要怕別人看不起。只有善于提出問題、虛心學(xué)習(xí)的人,才有可能成為真正的學(xué)習(xí)上的強(qiáng)者。
返回目錄
本文由用戶折月煮酒分享,如有侵權(quán)請聯(lián)系。如若轉(zhuǎn)載,請注明出處:http://m.qingqu1.cn/27778.html