元一次方程 篇一
教學(xué)目標(biāo)
1.使學(xué)生正確認(rèn)識(shí)含有字母系數(shù)的一元一次方程。
2.使學(xué)生掌握含有字母系數(shù)的一元一次方程的解法。
3.使學(xué)生會(huì)進(jìn)行簡(jiǎn)單的公式變形。
4.培養(yǎng)學(xué)生由特殊到一般、由一般到特殊的邏輯思維能力。5.通過公式變形例題,培養(yǎng)學(xué)生解決實(shí)際問題的能力,激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣。
教學(xué)重點(diǎn):
(1)含有字母系數(shù)的一元一次方程的解法。
(2)公式變形。
教學(xué)難點(diǎn) :
(1)對(duì)字母函數(shù)的理解,并能準(zhǔn)確區(qū)分字母系數(shù)與數(shù)字系數(shù)的區(qū)別與聯(lián)系。
(2)在公式中會(huì)準(zhǔn)確區(qū)分未知數(shù)與字母系數(shù),并進(jìn)行正確的公式變形。
教學(xué)方法
啟發(fā)式教學(xué)和討論式教學(xué)相結(jié)合
教學(xué)手段
多媒體
教學(xué)過程
(一)復(fù)習(xí)提問
提出問題:
1.什么是一元一次方程?
在學(xué)生答的基礎(chǔ)上強(qiáng)調(diào):(1)“一元”——一個(gè)未知數(shù);“一次”——未知數(shù)的次數(shù)是1.
2.解一元一次方程的步驟是什么?
答:(1)去分母、去括號(hào)。
(2)移項(xiàng)——未知項(xiàng)移到等號(hào)一邊常數(shù)項(xiàng)移到等號(hào)另一邊。
注意:移項(xiàng)要變號(hào)。
(3)合并同類項(xiàng)——提未知數(shù)。
(4)未知項(xiàng)系數(shù)化為1——方程兩邊同除以未知項(xiàng)系數(shù),從而解得方程。
(二)引入新課
提出問題:一個(gè)數(shù)的a倍(a≠0)等于b,求這個(gè)數(shù)。
引導(dǎo)學(xué)生列出方程:ax=b(a≠0).
讓學(xué)生討論:
(1)這個(gè)方程中的未知數(shù)是什么?已知數(shù)是什么?(a、b是已知數(shù),x是未知數(shù))
(2)這個(gè)方程是不是一元一次方程?它與我們以前所見過的一元一次方程有什么區(qū)別與聯(lián)系?(這個(gè)方程滿足一元一次方程的定義,所以它是一元一次方程。)
強(qiáng)調(diào)指出:ax=b(a≠0)這個(gè)一元一次方程與我們以前所見過的一元一次方程最大的區(qū)別在于已知數(shù)是a、b(字母).a是x的系數(shù),b是常數(shù)項(xiàng)。
(三)新課
1.含有字母系數(shù)的一元一次方程的定義
ax=b(a≠0)中對(duì)于未知數(shù)x來說a是x的系數(shù),叫做字母系數(shù),字母b是常數(shù)項(xiàng),這個(gè)方程就是一個(gè)含有字母系數(shù)的一元一次方程,今天我們就主要研究這樣的方程。
2.含有字母系數(shù)的一元一次方程的解法
教師提問:ax=b(a≠0)是一元一次方程,而a、b是已知數(shù),就可以當(dāng)成數(shù)看,就像解一般的一元一次方程一樣,如下解出方程:
ax=b(a≠0).
由學(xué)生討論這個(gè)解法的思路對(duì)不對(duì),解的過程對(duì)不對(duì)?
在學(xué)生討論的基礎(chǔ)上,教師歸納總結(jié)出含有字母函數(shù)的一元一次方程和過去學(xué)過的一元一次方程的解法的區(qū)別和聯(lián)系。
含有字母系數(shù)的一元一次方程的解法和學(xué)過的含有數(shù)字系數(shù)的一元一次方程的解法相同。(即仍需要采用去分母、去括號(hào)、移項(xiàng)、合并同類項(xiàng)、方程兩邊同除以未知數(shù)的系數(shù)等步驟。)
特別注意:用含有字母的式子去乘或者除方程的兩邊,這個(gè)式子的值不能為零。
3.講解例題
例1 解方程ax+b2=bx+a2(a≠b).
解:移項(xiàng),得 ax-bx=a2-b2,
合并同類項(xiàng),得(a-b)x=a2-b2.
∵a≠b,∴a-b≠0.
x=a+b.
注意:
1.在沒有特別說明的情況下,一般x、y、z表示未知數(shù),a、b、c表示已知數(shù)。
2.在未知項(xiàng)系數(shù)化為1這一步是最易出錯(cuò)的一步,一定要說明未知項(xiàng)系數(shù)(式)不為零之后才可以方程兩邊同除以未知項(xiàng)系數(shù)(式).
3.方
例2、解方程
分析:去分母時(shí),要方程兩邊同乘ab,而需ab≠0,那么題目中有沒有這個(gè)條件呢?有隱含條件a≠0,b≠0.
解:b(x-b)=2ab-a(x-a)(a+b≠0).
bx-b2=2ab-ax+a2(去分母注意“2”這項(xiàng)不要忘記乘以最簡(jiǎn)公分母。)
ba+ax=a2+2ab+b2
(a+b)x=(a+b)2.
∵a+b≠0,
∴x=a+b.
(四)課堂練習(xí)
解下列方程:
教材P.90.練習(xí)題1—4.
補(bǔ)充練習(xí):
5.a2(x+b)=b2(x+a)(a2≠b2).
解:a2x+a2b=b2x+ab2
(a2-b2)x=ab(b-a).
∵a2≠b2,∴a2-b2≠0
解:2x(a-3)-(a+2)(a-3)=x(a+2)
(a-b)x=(a+2)(a-3).
∵a≠8,∴a-8≠0
(五)小結(jié)
1.這節(jié)課我們要理解含有字母系數(shù)的一元一次方程的概念,掌握含有字母系數(shù)的方程與數(shù)字系數(shù)方程的區(qū)別與聯(lián)系。
2.含有字母系數(shù)的方程的解法與只含有數(shù)字系數(shù)的方程的解法相同。但必須注意:用含有字母的式子去乘或除方程的兩邊,這式子的值不能為零。
六、布置作業(yè)
教材P.93.A組1—6;B組1、
注意:A組第6題要給些提示。
七、板書設(shè)計(jì)
探究活動(dòng)
a=bc 型數(shù)量關(guān)系
問題引入:
問題設(shè)置:有一大捆粗細(xì)均勻的電線,現(xiàn)要確定其中長(zhǎng)度的值,怎樣做比較簡(jiǎn)捷?(使用的工具不限,可以從中先取一段作為檢驗(yàn)樣品)
提示:由于電線的粗細(xì)均勻分布的,所以每段同樣長(zhǎng)度的電線的質(zhì)量相等。
1、由學(xué)生討論,得出結(jié)論。
2、教師再加深一步提問:在我們討論的問題涉及的量中,如果電線的總質(zhì)量為a,總
長(zhǎng)度為b,單位長(zhǎng)度的質(zhì)量為c,a,b,c之間有什么關(guān)系?
由學(xué)生歸納出:a=bc。對(duì)于解決問題:可先取1米長(zhǎng)的電線,稱出它的質(zhì)量 ,再稱
出其余電線的總質(zhì)量 ,則 (米)是其余電線的長(zhǎng)度,所以這捆電線的總長(zhǎng)度為( )米。
引出可題:探究活動(dòng):a=bc型數(shù)量關(guān)系。
1、b、c之一為定值時(shí)。
讀課本P.96—P.97并填表1和表2中發(fā)現(xiàn)a=bc型數(shù)量關(guān)系有什么規(guī)律和特點(diǎn)?
(1)分析表1
表1中,A=bc,b、c增加(或減小)A相應(yīng)的增大(或減小)如矩形1和矩形2項(xiàng)比
較:寬c=1,長(zhǎng)由2變?yōu)?。
面積也由2增加到4;矩形3,4類似,再看矩形1和矩形3:長(zhǎng)都為b=2,寬由1增加到2,面積也變?yōu)樵瓉淼?倍,矩形2、4類似。
得出結(jié)論,A=bc中,當(dāng)b,c之一為定值(定量)時(shí),A隨另一量的變化而變化,與之成正比例。
(2)分析表2
(1)表2從理論上證明了對(duì)表1的分析的結(jié)果。
(2)矩形推拉窗的活動(dòng)扇的通風(fēng)面積A和拉開長(zhǎng)度b成正比。(高為定值)
(3)從實(shí)際中猜想,或由經(jīng)驗(yàn)得出的結(jié)論,在經(jīng)理論上去驗(yàn)證,再用于實(shí)際,這是
我們數(shù)需解決問題常用的方法之一,是由實(shí)際到抽象再由抽象到實(shí)際的辯證唯物主義思想。
2、為定值時(shí)
讀書P.98—P.99,填P.99空,自己試著分析數(shù)據(jù),看到出什么結(jié)論?
分析:這組數(shù)據(jù)的前提:面積A一定,b,c之間的關(guān)系是反比例。
可見,a=bc型數(shù)量關(guān)系不僅在實(shí)際生活中存在,而且有巨大的作用。
這三個(gè)式子是同一種數(shù)量關(guān)系的三種不同形式,由其中一個(gè)式子可以得出另兩個(gè)式子。
3、實(shí)際問題中,常見的a=bc型數(shù)量關(guān)系。
(1)總價(jià)=單價(jià)×貨物數(shù)量;
(2)利息=利率×本金;
(3)路程=速度×?xí)r間;
(4)工作量=效率×?xí)r間;
(5)質(zhì)量=密度×體積。
… 例1、每個(gè)同學(xué)購一本代數(shù)教科書,書的單價(jià)是2元,求總金額y(元)與學(xué)生數(shù)n(個(gè))的關(guān)系。
策略:總價(jià)=單價(jià)×數(shù)量。而數(shù)量等于學(xué)生人數(shù)n,故不難求得關(guān)系式。
解:y=2n
總結(jié):本題考查a=bc型關(guān)系式,解題關(guān)鍵是弄清數(shù)量關(guān)系。
例2、一輛汽車以30km/h的速度行駛,行駛路程s(km)與行使的時(shí)間t(h)有怎樣的關(guān)系呢?請(qǐng)表示出來。
解:s=30t
例3、一種儲(chǔ)蓄的年利率為2.25%,寫出利息y(元)與存入本金x(元)之間的關(guān)系(假定存期一年)。
解:y=2.25%x
程的解是分式形式時(shí),一般要化成最簡(jiǎn)分式或整式。
元一次方程 篇二
2.4再探實(shí)際問題與一元一次方程
—–銷售中的盈虧(第一課時(shí))
一。 教學(xué)任務(wù)分析
教
學(xué)
目
標(biāo)
知識(shí)技能
使學(xué)生根據(jù)商品銷售問題中的數(shù)量關(guān)系找出等量關(guān)系,列出方程,掌握商品盈虧的求法。
教學(xué)
思考
1.會(huì)將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,通過列方程解決問題。
2.體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值。
解決
問題
會(huì)設(shè)未知數(shù),并能利用問題中的相等關(guān)系列方程,通過分析解決銷售中的。盈虧問題,進(jìn)一步了解用方程解決實(shí)際問題的基本過程。
情感
態(tài)度
通過學(xué)習(xí)更加關(guān)注生活,增強(qiáng)用數(shù)學(xué)的意識(shí),從而激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情。
重
點(diǎn)
讓學(xué)生知道商品銷售中的盈虧的算法。
難點(diǎn)
弄清商品銷售中的“進(jìn)價(jià)”“售價(jià)”及“利潤(rùn)””利潤(rùn)率”的含義和它們之間的等量關(guān)系。
二。課前準(zhǔn)備
教具
學(xué)具
補(bǔ)充材料
課件
鋪墊練習(xí) 課堂練習(xí) 拓廣延伸練習(xí)
三.教學(xué)過程設(shè)想
教 師 活 動(dòng)
學(xué)生活動(dòng)
設(shè)計(jì)意圖
一。創(chuàng)設(shè)情境,引入新課
前面我們結(jié)合實(shí)際問題討論了如何分析數(shù)量
關(guān)系,利用相等關(guān)系列方程以及如何解方程,
可以看出方程是分析和解決問題的一種很有用
的數(shù)學(xué)工具,本節(jié)課我們就來探究如何用一元
一次方程解決實(shí)際問題。
學(xué)生回憶、猜想
激起學(xué)生主動(dòng)回
憶、聯(lián)想和學(xué)習(xí)欲
望。
二。師生互動(dòng),課堂探究
(出示課件)
教師先介紹圖片,再提問
問題一:某商店在某時(shí)間以每件60元的價(jià)格
賣出兩件衣服,其中一件盈利25%,另一件虧
損25%,賣出這兩件衣服總的是盈利還是虧損,
或是不盈不虧?請(qǐng)同學(xué)們估算賣這兩件衣服的盈虧情況。
學(xué)生觀察、合
作交流、討論、
發(fā)表看法
培養(yǎng)學(xué)生學(xué)會(huì)合
作交流,善于聽取
他人見解和敢于發(fā)
言,讓學(xué)生大體估
算身邊的實(shí)際問題
,可激發(fā)學(xué)習(xí)興趣
和探究的主動(dòng)性。
問題二:漸進(jìn)給出,教師因情引導(dǎo),并板書
利潤(rùn)=進(jìn)價(jià)×利潤(rùn)率
如果一件商品的進(jìn)價(jià)是40元,
(1) 如果賣出后盈利25%,那么該商品的
利潤(rùn)怎樣算?
(2) 如果賣出后虧損25%,那么該商品的
利潤(rùn)怎樣算?
(3)那么利潤(rùn)、進(jìn)價(jià)、利潤(rùn)率有什么關(guān)系?
學(xué)生合作交流
討論、歸納、發(fā)
表意見
讓學(xué)生結(jié)合生活
經(jīng)驗(yàn),由身邊熟悉
實(shí)際的問題構(gòu)建數(shù)
學(xué)模型,培養(yǎng)學(xué)生
會(huì)用數(shù)學(xué)方法解決
實(shí)際問題,和由特
殊到一般,概括能
力、學(xué)生感到好學(xué)
,進(jìn)而樂學(xué),從感
性上自然地熟悉銷
售中的等量關(guān)系,
并逐步突破重難點(diǎn)
,為以后問題打下
基礎(chǔ)。
問題三:漸近給出,教師因情引導(dǎo),并板書
利潤(rùn)=售價(jià)-進(jìn)價(jià)
或 利潤(rùn)+進(jìn)價(jià)=售價(jià)
(1)小賣部老板的面包進(jìn)價(jià)為0.80元/個(gè),
賣給同學(xué)們1元/個(gè),老板獲取利潤(rùn)怎樣算?
(2)因而利潤(rùn)、售價(jià)、進(jìn)價(jià)的關(guān)系又如何呢?
問題四:教師逐步給出,并引導(dǎo)學(xué)生根據(jù)問題
二、三中的等量關(guān)系來回答,解答,最后給出解
題步驟,并板書。
思考:盈利25%、虧損25%的意義?
引導(dǎo)學(xué)生得出:盈利25%,即這件商品的銷售利潤(rùn)值(售價(jià)—進(jìn)價(jià))是商品進(jìn)價(jià)的25%,虧損25%,即這件商品的銷售虧損值(進(jìn)價(jià)—售價(jià))是商品進(jìn)價(jià)的25%。
問題①:你能從大體上估算賣這兩件衣服的盈虧情況嗎?
問題②:如何說明你的估算是正確的呢?
問題③:如何判斷是盈還是虧?
問題④:兩件衣服的進(jìn)價(jià)、售價(jià)分別是多少?如何設(shè)未知數(shù)?相等關(guān)系是什么?
問題⑤:商品銷售中的進(jìn)價(jià)、 售價(jià)、 利潤(rùn)、利潤(rùn)率有何關(guān)系?
巡視學(xué)生完成情況,給予輔導(dǎo),最后給出解題
步驟。
三。歸納總結(jié)。
學(xué)生合作、交
流、討論、思考
、補(bǔ)充解答過程
讓學(xué)生學(xué)會(huì)回顧
已有知識(shí),學(xué)會(huì)分
析解決實(shí)際問題,
養(yǎng)成好動(dòng)腦、動(dòng)手
、合作學(xué)習(xí)的習(xí)慣
,體驗(yàn)成功感,以
突破重難點(diǎn),達(dá)到
教學(xué)目標(biāo)。
四。知識(shí)拓展,教師給出問題:
(1) 汕頭琴行同時(shí)出售兩臺(tái)不同鋼琴,每臺(tái)售價(jià)為960元,其中一臺(tái)盈利20%,另一臺(tái)虧損20%。這次琴行是贏利還是虧損,或是不盈不虧?
(2)某商店對(duì)購買大件商品實(shí)行分期付款,明明的爸爸買了一臺(tái)9000元的電腦,第一個(gè)月付款30℅,以后每月付款450元,問明明的爸爸需幾個(gè)月付清余下的款?
學(xué)生獨(dú)立思考
并完成、展示
及時(shí)鞏固所學(xué)知
識(shí)
五。回顧與小結(jié)
1.能理解商品銷售中的基本概念及相等關(guān)系
,熟練地應(yīng)用 “利潤(rùn)=售價(jià)-進(jìn)價(jià)、
利潤(rùn)=進(jìn)價(jià)×利潤(rùn)率”
來尋找商品中的相等關(guān)系
2.能聯(lián)系以前研究過的問題,加深理解用一
元一次方程解決實(shí)際問題的一般步驟。
六。拓展延伸題。(略)
學(xué)生看黑板、
屏幕、教材、記
錄
回顧所學(xué)知識(shí),
學(xué)會(huì)梳理、概括、
總結(jié)。
七。作業(yè)布置
教材第97頁 第3、題
學(xué)生記錄
對(duì)已學(xué)知識(shí)強(qiáng)化
鞏固
《解一元一次方程》教案 篇三
一、學(xué)習(xí)目標(biāo)
1.知道解一元一次方程的去分母步驟,并能熟練地解一元一次方程。
2.通過討論、探索解一元一次方程的一般步驟和容易產(chǎn)生的問題,培養(yǎng)學(xué)生觀察、歸納和概括能力。
二、重點(diǎn):
解一元一次方程中去分母的方法;培養(yǎng)學(xué)生自己發(fā)現(xiàn)問題、解決問題的能力。
難點(diǎn):去分母法則的正確運(yùn)用。
三、學(xué)習(xí)過程:
(一)、復(fù)習(xí)導(dǎo)入
1、解方程:(1);(2)2(x-2)-(4x-1)=3(1-x)
2、回顧:解一元一次方程的一般步驟及每一步的依據(jù)
3、(只列不解)為改善生態(tài)環(huán)境,避免水土流失,某村積極植樹造林,原計(jì)劃每天植樹60棵,實(shí)際每天植樹80棵,結(jié)果比預(yù)計(jì)時(shí)間提前4天完成植樹任務(wù),則計(jì)劃植樹_____棵。
(二)學(xué)生自學(xué)p99–100
根據(jù)等式性質(zhì),方程兩邊同乘以,得
即得不含分母的方程:4x-3x=960
X=960
像這樣在方程兩邊同時(shí)乘以,去掉分?jǐn)?shù)的分母的變形過程叫做。依據(jù)是
(三)例題:
例1解方程:
解:去分母,得依據(jù)
去括號(hào),得依據(jù)
移項(xiàng),得依據(jù)
合并同類項(xiàng),得依據(jù)
系數(shù)化為1,得依據(jù)
注意:1)、分?jǐn)?shù)線具有
2)、不含分母的項(xiàng)也要乘以(即不要漏乘)
討論:小明是個(gè)“小馬虎”下面是他做的題目,我們看看對(duì)不對(duì)?如果不對(duì),請(qǐng)幫他改正。
(1)方程去分母,得
(2)方程去分母,得
(3)方程去分母,得
(4)方程去分母,得
通過這幾節(jié)課的學(xué)習(xí),你能歸納小結(jié)一下解一元一次方程的一般步驟嗎?
解一元一次方程的一般步驟是:
1.依據(jù);
2.依據(jù);
3.依據(jù);
4.化成的形式;依據(jù);
5.兩邊同除以未知數(shù)的系數(shù),得到方程的`解;依據(jù);
練一練:見P101練習(xí)解下列方程:(1)(2)
(3)思考:如何求方程
小明的解法:解:去百分號(hào),得同學(xué)看看有沒有異議?
四、小結(jié):
談?wù)勥@節(jié)課有什么收獲以及解帶有分母的一元一次方程要注意的一些問題。
五、課堂檢測(cè):
1、去分母時(shí),在方程的左右兩邊同時(shí)乘以各個(gè)分母的_____________,從而去掉分母,去分母時(shí),每一項(xiàng)都要乘,不要漏乘,特別是不含分母的項(xiàng),注意含分母的項(xiàng)約去分母分子必須加括號(hào),由于分?jǐn)?shù)線具有
2、解方程(1)2x+5=5x-7(2)4-3(2-x)=5x(3)=3x-1
(4)=+1(5)
六、作業(yè)
P102:3,10.
元一次方程 篇四
今天我講了一節(jié)《含有字母系數(shù)的一元一次方程》本來在備課的時(shí)候準(zhǔn)備的很充足,考慮到了學(xué)生在課堂上將出現(xiàn)的各種情況,開始講的時(shí)候很順利,學(xué)生的狀態(tài)和他們的發(fā)言都很令我滿意,但是在講完例題,引導(dǎo)學(xué)生做名校密題、做練習(xí)時(shí)出現(xiàn)了問題,學(xué)生的做題速度與準(zhǔn)確度與我的預(yù)想有一點(diǎn)差距。當(dāng)時(shí)我有點(diǎn)著急,一看時(shí)間所剩不多,沒有對(duì)學(xué)生在做題過程中所出現(xiàn)的問題進(jìn)行及時(shí)解決 ,而留到自習(xí)再逐一解決。
我在備課的時(shí)候是這樣設(shè)計(jì)的:首先對(duì)以前所學(xué)知識(shí)進(jìn)行回顧,讓學(xué)生在很自然的狀態(tài)下從一元一次方程過度到含有字母系數(shù)的一元一次方程。其次,給出兩道例題,讓學(xué)生通過做例題和練習(xí)并從中總結(jié)出書上給的注意“方程兩邊同乘或除以的式子不能為零。”再次,引導(dǎo)全體同學(xué)做名校密題上的練習(xí),并逐漸加深難度。最后,根據(jù)學(xué)生情況,分層次留作業(yè)。
對(duì)于本節(jié)課我的感受就是,當(dāng)有人聽課的時(shí)候太注重課堂的流程往往達(dá)不到預(yù)想的效果,與其講究一些講課的技巧,不如塌塌實(shí)實(shí)的講一節(jié)課,真正做到把知識(shí)傳授給學(xué)生才是講課的根本。
初中七年級(jí)上冊(cè)數(shù)學(xué)《解一元一次方程》教案優(yōu)質(zhì) 篇五
一、學(xué)生起點(diǎn)分析
學(xué)生的知識(shí)技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)習(xí)過算術(shù)四則運(yùn)算,而初中的有理數(shù)運(yùn)算是以小學(xué)算術(shù)四則運(yùn)算為基礎(chǔ)的,不同的是有理數(shù)運(yùn)算多了一個(gè)符號(hào)問題。符號(hào)法則是有理數(shù)運(yùn)算法則的重要組成部分,也是學(xué)生學(xué)習(xí)本章知識(shí)和今后學(xué)習(xí)其他與計(jì)算有關(guān)的內(nèi)容時(shí)容易出錯(cuò)的知識(shí)點(diǎn)之一。
學(xué)生活動(dòng)經(jīng)驗(yàn)基礎(chǔ):在前面相關(guān)知識(shí)的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了一些數(shù)學(xué)活動(dòng),感受到了數(shù)的范圍的擴(kuò)大,能借助生活經(jīng)驗(yàn)對(duì)一些簡(jiǎn)單的實(shí)際問題進(jìn)行有理數(shù)的運(yùn)算,如計(jì)算比賽的得分,計(jì)算溫差等等。同時(shí)在以前的數(shù)學(xué)學(xué)習(xí)中學(xué)生已經(jīng)經(jīng)歷了很多合作學(xué)習(xí)的過程,具有了一定的合作學(xué)習(xí)的經(jīng)驗(yàn),具備了一定數(shù)學(xué)交流的能力。
學(xué)生學(xué)習(xí)中的困難預(yù)設(shè):學(xué)生學(xué)習(xí)數(shù)學(xué)是一種認(rèn)識(shí)過程,要遵循一般的認(rèn)識(shí)規(guī)律,而七年級(jí)的學(xué)生,對(duì)異號(hào)兩數(shù)相加從未接觸過,與小學(xué)加法比較,思維強(qiáng)度增大,需要通過絕對(duì)值大小的比較來確定和的符號(hào)和加法轉(zhuǎn)化為減法兩個(gè)過程,要求學(xué)生在課堂上短時(shí)間內(nèi)完成這個(gè)認(rèn)識(shí)過程確有一定的難度,在教學(xué)時(shí)應(yīng)從實(shí)例出發(fā),充分利用教材中的正負(fù)抵消的思想,用數(shù)形結(jié)合的觀點(diǎn)加以解釋,讓學(xué)生感知法則的由來,以突破這一難點(diǎn)。
二、教學(xué)任務(wù)分析
對(duì)于有理數(shù)的運(yùn)算,首先在于運(yùn)算的意義的理解,即首先要回答為什么要進(jìn)行運(yùn)算。為此,必須讓學(xué)生通過具體的問題情境,認(rèn)識(shí)到運(yùn)算的作用,加深學(xué)生對(duì)運(yùn)算本身意義的理解,同時(shí)也讓學(xué)生體會(huì)到運(yùn)算的應(yīng)用,從而培養(yǎng)學(xué)生一定的應(yīng)用意識(shí)和能力。教科書基于學(xué)生學(xué)習(xí)了相反數(shù)和絕對(duì)值基礎(chǔ)之上,提出了本課時(shí)的具體學(xué)習(xí)任務(wù):探索有理數(shù)的加法運(yùn)算法則,進(jìn)行有理數(shù)的加法運(yùn)算。本課時(shí)的教學(xué)重點(diǎn)是有理數(shù)加法法則的探索過程,利用有理數(shù)的加法法則進(jìn)行計(jì)算,教學(xué)難點(diǎn)是異號(hào)兩數(shù)相加的法則。教學(xué)方法是“引導(dǎo)——分類——歸納”。本課時(shí)的教學(xué)目標(biāo)如下:
1.經(jīng)歷探索有理數(shù)加法法則的過程,理解有理數(shù)的加法法則;
2.能熟練進(jìn)行整數(shù)加法運(yùn)算;
3.培養(yǎng)學(xué)生的數(shù)學(xué)交流和歸納猜想的能力;
4.滲透分類、探索、歸納等思想方法,使學(xué)生了解研究數(shù)學(xué)的一些基本方法。
三、教學(xué)過程設(shè)計(jì)
本課時(shí)設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié):復(fù)習(xí)引入,提出問題;第二環(huán)節(jié):活動(dòng)探究,猜想結(jié)論;第三環(huán)節(jié):驗(yàn)證明確結(jié)論;第四環(huán)節(jié):運(yùn)用鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):布置作業(yè)。
(一)復(fù)習(xí)引入,提出問題
活動(dòng)內(nèi)容:
1.復(fù)習(xí)提問:
(1)下列各組數(shù)中,哪一個(gè)較大?
(2)一位同學(xué)在一條東西方向的跑道上,先向東走了20米,又向西走了30米,能否確定他現(xiàn)在的位置位于出發(fā)點(diǎn)的哪個(gè)方向,與原來出發(fā)的位置相距多少米?若向東記為正,向西記為負(fù),該問題用算式表示為 。
活動(dòng)目的:我們已經(jīng)熟悉正數(shù)的運(yùn)算,然而實(shí)際問題中做加法運(yùn)算的數(shù)有可能超出正數(shù)范圍。這里先讓學(xué)生回顧在具體問題中感受正數(shù)和負(fù)數(shù)的加法運(yùn)算。
2.提出問題:
某班舉行知識(shí)競(jìng)賽,評(píng)分標(biāo)準(zhǔn)是:答對(duì)一題加1分,答錯(cuò)一題扣1分,不回答得0分。
如果我們用1個(gè) 表示+1,用1個(gè) ,那么 就表示0,同樣 也表示0.
(1)計(jì)算(-2)+(-3).
在方框中放進(jìn)2個(gè) 和3個(gè) :
因此,(-2)+(-3)= -5.
用類似的方法計(jì)算(2)(-3)+ 2
(3) 3 +(-2)
(4) 4+(-4)
思考: 兩個(gè)有理數(shù)相加,還有哪些不同的情形?舉例說明。
引導(dǎo)學(xué)生列舉兩個(gè)正數(shù)相加,如3 + 2,一個(gè)數(shù)和零相加,如0+(-4),4 + 0。
活動(dòng)目的:通過實(shí)際問題情境類比列出兩個(gè)有理數(shù)相加的7種不同情形,兩個(gè)正數(shù)相加、兩個(gè)負(fù)數(shù)相加,異號(hào)兩數(shù)相加(根據(jù)絕對(duì)值又可分為三類)、一個(gè)加數(shù)為0。進(jìn)而討論如何進(jìn)行一般的有理數(shù)加法的運(yùn)算。
活動(dòng)的實(shí)際效果: 實(shí)際問題情境為學(xué)生營(yíng)造了良好的學(xué)習(xí)氛圍,利于他們積極探究。
(二)活動(dòng)探究,猜想結(jié)論:
上面我們列出了兩個(gè)有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和。但是,要計(jì)算兩個(gè)有理數(shù)相加所得的和,我們總不能一直用這種方法。現(xiàn)在請(qǐng)同學(xué)們仔細(xì)觀察比較這7個(gè)算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運(yùn)算法則嗎?也就是結(jié)果的符號(hào)怎么定?絕對(duì)值怎么算?
學(xué)生分組進(jìn)行活動(dòng),教師關(guān)注學(xué)生在活動(dòng)中的表現(xiàn),可以根據(jù)學(xué)生的實(shí)際情況給予適當(dāng)點(diǎn)撥和引導(dǎo),鼓勵(lì)學(xué)生大膽發(fā)表自己的意見,最后形成統(tǒng)一的認(rèn)識(shí)。
對(duì)“一起探究”,教師可引導(dǎo)學(xué)生按以下步驟思考:
1、觀察列出的具體算式,根據(jù)兩個(gè)加數(shù)的符號(hào)分類:兩個(gè)正數(shù)相加、兩個(gè)負(fù)數(shù)相加,異號(hào)兩數(shù)相加(根據(jù)絕對(duì)值又可分為三類)、一個(gè)加數(shù)為0。
2、同號(hào)兩數(shù)相加時(shí),和的符號(hào)與兩個(gè)加數(shù)的符號(hào)有怎樣的關(guān)系?和的絕對(duì)值和加數(shù)的絕對(duì)值有怎樣的關(guān)系?異號(hào)兩數(shù)相加時(shí)和的符號(hào)與兩個(gè)加數(shù)的符號(hào)有怎樣的關(guān)系?和的絕對(duì)值和加數(shù)的絕對(duì)值有怎么樣的關(guān)系?有一個(gè)加數(shù)為0時(shí),和是什么?
3、從中歸納概括出規(guī)律
在學(xué)生探究的基礎(chǔ)上,教師引出規(guī)定的加法法則。
在活動(dòng)中,盡可能讓學(xué)生獨(dú)立完成,必要時(shí)可以交流,教師只在適當(dāng)?shù)臅r(shí)候給予幫助。
同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。
異號(hào)兩數(shù)相加,絕對(duì)值值相等時(shí)和為0;絕對(duì)值不相等時(shí),取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值。
一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。
活動(dòng)目的:利用分組討論、分類歸納幫助學(xué)生理解加法運(yùn)算過程,同時(shí)有利于加法運(yùn)算法則的歸納。
活動(dòng)的實(shí)際效果:由于采用了圖示的教學(xué)手段,在教師的引導(dǎo)下讓學(xué)生分類觀察,發(fā)現(xiàn)規(guī)律,用自己的語言表達(dá)規(guī)律,最后由學(xué)生對(duì)規(guī)律進(jìn)行歸納總結(jié)補(bǔ)充,從而得出有理數(shù)的加法法則。通過實(shí)際問題情境,讓學(xué)生親身參加了探索發(fā)現(xiàn),獲取知識(shí)和技能的全過程。理解有理數(shù)加法法則規(guī)定的合理性,培養(yǎng)了學(xué)生的分類和歸納概括的能力。
(三)驗(yàn)證明確結(jié)論:
例1 計(jì)算下列算式的結(jié)果,并說明理由:
(1) 180 +(-10) (2) (-10)+(-1);
(3)5+(-5); (4) 0+(-2)
活動(dòng)目的:給學(xué)生提供示范,進(jìn)行有理數(shù)加法,可以按照“一觀察,二確定,三求和”的步驟進(jìn)行,一觀察是指觀察兩個(gè)加數(shù)是同號(hào)還是異號(hào),二確定是指確定“和”的符號(hào),三求和是指計(jì)算“和”的絕對(duì)值。
活動(dòng)的實(shí)際效果:通過習(xí)題,加深了學(xué)生對(duì)有理數(shù)加法法則的理解。
(四)運(yùn)用鞏固:
活動(dòng)內(nèi)容:
1. 口答下列算式的結(jié)果
(1) (+4)+(+3); (2) (-4)+(-3);
(3)(+4)+(-3); (4) (+3)+(-4);
(5)(+4)+(-4); (6) (-3)+0
(7) 0+(+2); (8) 0+0.
活動(dòng)目的:通過這組練習(xí),讓學(xué)生進(jìn)一步鞏固有理數(shù)加法的法則,達(dá)到熟練程度。
2.請(qǐng)同學(xué)們完成書上的隨堂練習(xí):
(1)(-25)+(-7); (2)(-13)+5;
(3)(-23)+0; (4)45+(-45)
全班學(xué)生書面練習(xí),四位學(xué)生板演,教師對(duì)學(xué)生板演進(jìn)行講評(píng)。
活動(dòng)目的:習(xí)題的配備上,注意到學(xué)生的思維是一個(gè)循序漸進(jìn)的過程,所以由易到難,使學(xué)生在練習(xí)的過程中能夠逐步地提高能力,得到發(fā)展。
活動(dòng)的實(shí)際效果: 通過練習(xí)進(jìn)一步熟悉有理數(shù)的加法法則。通過口答、演排糾錯(cuò),活躍課堂氣氛,充分調(diào)動(dòng)學(xué)生的積極性,學(xué)生在一種比較活躍的氛圍中,解決各種(五)課堂小結(jié):
活動(dòng)內(nèi)容:師生共同總結(jié)。
1. 兩個(gè)有理數(shù)相加,“一觀察,二確定,三求和”,即首先判斷加法類型,再確定和的符號(hào),最后確定和的絕對(duì)值
2. 有理數(shù)加法法則及其應(yīng)用。
3. 注意異號(hào)的情況。
活動(dòng)目的:課堂小結(jié)并不只是課堂知識(shí)點(diǎn)的回顧,要盡量讓學(xué)生暢談自己的切身感受,教師對(duì)于發(fā)言進(jìn)行鼓勵(lì),進(jìn)一步梳理本節(jié)所學(xué),更要有所思考,達(dá)到對(duì)所學(xué)知識(shí)鞏固的目的。
活動(dòng)的實(shí)際效果: 學(xué)生對(duì)“一觀察,二確定,三求和”的步驟印象較深,達(dá)到了本節(jié)課的教學(xué)目標(biāo)。
以上內(nèi)容就是我為您提供的5篇《初中七年級(jí)上冊(cè)數(shù)學(xué)《解一元一次方程》教案優(yōu)質(zhì)》,希望對(duì)您的寫作有所幫助,更多范文樣本、模板格式盡在我。
本文由用戶楓葉分享,如有侵權(quán)請(qǐng)聯(lián)系。如若轉(zhuǎn)載,請(qǐng)注明出處:http://m.qingqu1.cn/22017.html