《一元二次方程》教案 篇一
《一元二次方程》全章教案
單元要點(diǎn)分析
教材內(nèi)容
1.本單元教學(xué)的主要內(nèi)容。
一元二次方程概念;解一元二次方程的方法;一元二次方程應(yīng)用題。
2.本單元在教材中的地位與作用。
一元二次方程是在學(xué)習(xí)《一元一次方程》、《二元一次方程》、分式方程等基礎(chǔ)之上學(xué)習(xí)的,它也是一種數(shù)學(xué)建模的方法。學(xué)好一元二次方程是學(xué)好二次函數(shù)不可或缺的,是學(xué)好高中數(shù)學(xué)的奠基工程。應(yīng)該說(shuō),一元二次方程是本書(shū)的重點(diǎn)內(nèi)容。
教學(xué)目標(biāo)
1.知識(shí)與技能
了解一元二次方程及有關(guān)概念;掌握通過(guò)配方法、公式法、因式分解法降次──解一元二次方程;掌握依據(jù)實(shí)際問(wèn)題建立一元二次方程的`數(shù)學(xué)模型的方法;應(yīng)用熟練掌握以上知識(shí)解決問(wèn)題。
2.過(guò)程與方法
(1)通過(guò)豐富的實(shí)例,讓學(xué)生合作探討,老師點(diǎn)評(píng)分析,建立數(shù)學(xué)模型。根據(jù)數(shù)學(xué)模型恰如其分地給出一元二次方程的概念。
(2)結(jié)合八冊(cè)上整式中的有關(guān)概念介紹一元二次方程的派生概念,如二次項(xiàng)等。
(3)通過(guò)掌握缺一次項(xiàng)的一元二次方程的解法──直接開(kāi)方法,導(dǎo)入用配方法解一元二次方程,又通過(guò)大量的練習(xí)鞏固配方法解一元二次方程。
(4)通過(guò)用已學(xué)的配方法解ax2+bx+c=0(a0)導(dǎo)出解一元二次方程的求根公式,接著討論求根公式的條件:b2-4ac0,b2-4ac=0,b2-4ac0.
(5)通過(guò)復(fù)習(xí)八年級(jí)上冊(cè)《整式》的第5節(jié)因式分解進(jìn)行知識(shí)遷移,解決用因式分解法解一元二次方程,并用練習(xí)鞏固它。
(6)提出問(wèn)題、分析問(wèn)題,建立一元二次方程的數(shù)學(xué)模型,并用該模型解決實(shí)際問(wèn)題。
《一元二次方程》教案 篇二
教學(xué)目的
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。
3.通過(guò)本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)難點(diǎn)和難點(diǎn):
重點(diǎn):
1.一元二次方程的有關(guān)概念
2.會(huì)把一元二次方程化成一般形式
難點(diǎn):
一元二次方程的含義。
教學(xué)過(guò)程設(shè)計(jì)
一、引入新課
引例:剪一塊面積是150cm2的長(zhǎng)方形鐵片,使它的長(zhǎng)比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:1.要解決這個(gè)問(wèn)題,就要求出鐵片的長(zhǎng)和寬。
2.這個(gè)問(wèn)題用什么數(shù)學(xué)方法解決?(間接計(jì)算即列方程解應(yīng)用題。
3.讓學(xué)生自己列出方程(x(x十5)=150)
深入引導(dǎo):方程x(x十5)=150有人會(huì)解嗎?你能叫出這個(gè)方程的名字嗎?
二、新課
1.從上面的引例我們有這樣一個(gè)感覺(jué):在解決日常生活的計(jì)算問(wèn)題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來(lái)。事實(shí)上初中代數(shù)研究的主要對(duì)象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對(duì)方程研究的還很不夠,從今天起我們就開(kāi)始研究這樣一類(lèi)方程——–一元一二次方程(板書(shū)課題)
2.什么是—元二次方程呢?現(xiàn)在我們來(lái)觀察上面這個(gè)方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點(diǎn)來(lái)說(shuō)它與一元一次方程沒(méi)有什么區(qū)別、也就是說(shuō)一元二次方程首先必須是一個(gè)整式方程,但是一個(gè)整式方程未必就是一個(gè)一元二次方程、這還取決于未知數(shù)的。最高次數(shù)是幾。如果方程未知數(shù)的最高次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書(shū)一元二次方程的定義)
3.強(qiáng)化一元二次方程的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:(2)x2=4
(2)(x十3)(3x·4)=(x十2)2;(4)(x—1)(x—2)=x2十8
從以上4例讓學(xué)生明白判斷一個(gè)方程是否是一元二次方程不能只看表面、而是能化簡(jiǎn)必須先化簡(jiǎn)、然后再查看這個(gè)方程未知數(shù)的最高次數(shù)是否是2。
4.一元二次方程概念的延伸
提問(wèn):一元二次方程很多嗎?你有辦法一下寫(xiě)出所有的一元二次方程嗎?
引導(dǎo)學(xué)生回顧一元二次方程的定義,分析一元二次方程項(xiàng)的情況,啟發(fā)學(xué)生運(yùn)用字母,找到一元二次方程的一般形式
ax2+bx+c=0(a≠0)
1).提問(wèn)a=0時(shí)方程還是一無(wú)二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項(xiàng)的名稱(chēng)及a、b的系數(shù)名稱(chēng).
3).強(qiáng)調(diào):一元二次方程的一般形式中“=”的左邊最多三項(xiàng)、其中一次項(xiàng)、常數(shù)項(xiàng)可以不出現(xiàn)、但二次項(xiàng)必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
強(qiáng)化概念(課本P6)
1.說(shuō)出下列一元二次方程的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):
(1)x2十3x十2=O(2)x2—3x十4=0;(3)3×2-5=0
(4)4×2十3x—2=0;(5)3×2—5=0;(6)6×2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫(xiě)出它的二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù)、常數(shù)項(xiàng):
(1)6×2=3-7x;(3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類(lèi)很重要的方程—一一元二次方程(如果方程未知數(shù)的最高次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項(xiàng)、其中二次項(xiàng)、常數(shù)項(xiàng)可以不出現(xiàn)、但二次項(xiàng)必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說(shuō)出隨便一個(gè)一元二次方程中一二次項(xiàng)、一次項(xiàng)、常數(shù)項(xiàng):二次項(xiàng)系數(shù)、一次項(xiàng)系數(shù).
課外作業(yè):略
數(shù)學(xué)《一元二次方程》教案設(shè)計(jì) 篇三
教學(xué)內(nèi)容:
本節(jié)內(nèi)容是:
人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)九年級(jí)上冊(cè)
第22章第2節(jié)第1課時(shí)。
一、教學(xué)目標(biāo)
(一)知識(shí)目標(biāo)
1、理解求解一元二次方程的實(shí)質(zhì)。
2、掌握解一元二次方程的配方法。
(二)能力目標(biāo)
1、體會(huì)數(shù)學(xué)的轉(zhuǎn)化思想。
2、能根據(jù)配方法解一元二次方程的一般步驟解一元二次方程。
(三)情感態(tài)度及價(jià)值觀
通過(guò)用配方法將一元二次方程變形的過(guò)程,讓學(xué)生進(jìn)一步體會(huì)轉(zhuǎn)化的思想方法,并增強(qiáng)他們學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重點(diǎn)
配方法解一元二次方程的一般步驟
三、教學(xué)難點(diǎn)
具體用配方法的一般步驟解一元二次方程。
四、知識(shí)考點(diǎn)
運(yùn)用配方法解一元二次方程。
五、教學(xué)過(guò)程
(一)復(fù)習(xí)引入
1、復(fù)習(xí):
解一元一次方程的一般步驟:
(1)去分母;
(2)去括號(hào);
(3)移項(xiàng);
(4)合并同類(lèi)項(xiàng);
(5)系數(shù)化為1。
2、引入:
二次根式的意義:若x2=a (a為非負(fù)數(shù)),則x叫做a的平方根,即x=±√a 。實(shí)際上,x2 =a(a為非負(fù)數(shù))就是關(guān)于x的一元二次方程,求x的平方根就是解一元二次方程。
(二)新課探究
通過(guò)實(shí)際問(wèn)題的解答,引出我們所要學(xué)習(xí)的知識(shí)點(diǎn)。通過(guò)問(wèn)題吸引學(xué)生的注意力,引發(fā)學(xué)生思考。
問(wèn)題1:
一桶某種油漆可刷的面積為1500dm2李林用這桶油漆剛好刷完10個(gè)同樣的正方體形狀的盒子的全部外表面,你能算出盒子的棱長(zhǎng)嗎?
問(wèn)題1重在引出用直接開(kāi)平方法解一元二次方程。這一問(wèn)題學(xué)生可通過(guò)“平方根的意義”的講解過(guò)程具體的解答出來(lái),
具體解題步驟:2解:設(shè)正方體的棱長(zhǎng)為x dm,則一個(gè)正方體的表面積為6xdm2
列出方程:60×2=1500
x2=25
x=±5
因?yàn)閤為棱長(zhǎng)不能為負(fù)值,所以x=5
即:正方體的棱長(zhǎng)為5dm。
1、用直接開(kāi)平方法解一元二次方程
(1)定義:運(yùn)用平方根的定義直接開(kāi)方求出一元二次方程解。
(2)備注:用直接開(kāi)平方法解一元二次方程,實(shí)質(zhì)是把一個(gè)一元二次方程“降次”,轉(zhuǎn)化為兩個(gè)一元二次方程來(lái)求方程的根。
問(wèn)題2:
要使一塊矩形場(chǎng)地的長(zhǎng)比寬多6cm,并且面積為16㎡,場(chǎng)地的長(zhǎng)和寬應(yīng)各為多少?
問(wèn)題2重在引出用配方法解一元二次方程。而問(wèn)題2應(yīng)該大部分同學(xué)都不會(huì),所以由我來(lái)具體的講解。主要通過(guò)與完全平方式對(duì)比逐步解這個(gè)方程。再由這個(gè)方程的求解過(guò)程師生共同總結(jié)出配方法解一元二次方程的一般步驟。讓學(xué)生加深映像。
具體解題步驟:
解:設(shè)場(chǎng)地寬x m,長(zhǎng)(x +6)m。
列方程: x(x +6)=16
即: x2+6x-16=0
x2+6x=16
x2+6x+9=16+9
(1)有實(shí)根(2)有兩正根(3)一正一負(fù)
變式題:m為何實(shí)數(shù)值時(shí),關(guān)于x的方程x2?mx?(3?m)?0有兩個(gè)大于1的根。
例2. 若8×4+8(a-2)x2-a+5>0對(duì)于任意實(shí)數(shù)x均成立,求實(shí)數(shù)a的取值范圍。
例3.關(guān)于x的方程ax?2x?1?0至少有一個(gè)負(fù)根,求實(shí)數(shù)m的取值范圍。
課堂小練習(xí):
【布置作業(yè)】
省略
數(shù)學(xué)《一元二次方程》教案設(shè)計(jì) 篇四
一、教學(xué)目標(biāo)
【知識(shí)與技能】
掌握應(yīng)用因式分解的方法,會(huì)正確求一元二次方程的解。
【過(guò)程與方法】
通過(guò)利用因式分解法將一元二次方程轉(zhuǎn)化成兩個(gè)一元一次方程的過(guò)程,體會(huì)“等價(jià)轉(zhuǎn)化”“降次”的數(shù)學(xué)思想方法。
【情感態(tài)度價(jià)值觀】
通過(guò)探討一元二次方程的解法,體會(huì)“降次”化歸的思想,逐步養(yǎng)成主動(dòng)探究的精神與積極參與的意識(shí)。
二、教學(xué)重難點(diǎn)
【教學(xué)重點(diǎn)】
運(yùn)用因式分解法求解一元二次方程。
【教學(xué)難點(diǎn)】
發(fā)現(xiàn)與理解分解因式的方法。
三、教學(xué)過(guò)程
(一)導(dǎo)入新課
復(fù)習(xí)回顧:和學(xué)生一起回憶平方差、完全平方公式,以及因式分解的常用方法。
(二)探究新知
問(wèn)題1:一個(gè)數(shù)的平方與這個(gè)數(shù)的3倍有可能相等嗎?如果相等,這個(gè)數(shù)是幾?你是怎樣求出來(lái)的?
學(xué)生小組討論,探究后,展示三種做法。
問(wèn)題:小穎用的什么法?——公式法
小明的解法對(duì)嗎?為什么?——違背了等式的性質(zhì),x可能是零。
小亮的解法對(duì)嗎?其依據(jù)是什么——兩個(gè)數(shù)相乘,如果積等于零,那么這兩個(gè)數(shù)中至少有一個(gè)為零。
問(wèn)題2:學(xué)生探討哪種方法對(duì),哪種方法錯(cuò);錯(cuò)的原因在哪?你會(huì)用哪種方法簡(jiǎn)便]
師引導(dǎo)學(xué)生得出結(jié)論:
如果a·b=0,那么a=0或b=0
(如果兩個(gè)因式的積為零,則至少有一個(gè)因式為零,反之,如果兩個(gè)因式有一個(gè)等于零,它們的積也就等于零。)
“或”有下列三層含義
①a=0且b≠0②a≠0且b=0③a=0且b=0
問(wèn)題3:
(1)什么樣的一元二次方程可以用因式分解法來(lái)解?
(2)用因式分解法解一元二次方程,其關(guān)鍵是什么?
(3)用因式分解法解一元二次方程的理論依據(jù)是什么?
(4)用因式分解法解一元二方程,必須要先化成一般形式嗎?
因式分解法:當(dāng)一元二次方程的一邊是0,而另一邊易于分解成兩個(gè)一次因式的乘積時(shí),我們就可以用分解因式的方法求解。這種用分解因式解一元二次方程的方法稱(chēng)為因式分解法。
老師提示:1.用分解因式法的條件是:方程左邊易于分解,而右邊等于零;2.關(guān)鍵是熟練掌握因式分解的知識(shí);3.理論依舊是“如果兩個(gè)因式的積等于零,那么至少有一個(gè)因式等于零。”
(三)鞏固提高
1.用分解因式法解下列方程嗎?
總結(jié):右化零,左分解,兩因式,各求解。
(四)小結(jié)作業(yè)
用因式分解法求解一元二次方程的步驟:
1.方程化為一般形式;
2.方程左邊因式分解;
3.至少一個(gè)一次因式等于零得到兩個(gè)一元一次方程;
4.兩個(gè)一元一次方程的解就是原方程的解。
數(shù)學(xué)教案-一元二次方程的應(yīng)用 篇五
12.6 一元二次方程的應(yīng)用(二)
一、素質(zhì)教育目標(biāo)
(一)知識(shí)教學(xué)點(diǎn):使學(xué)生會(huì)用列一元二次方程的方法解有關(guān)面積、體積方面的應(yīng)用問(wèn)題。
(二)能力訓(xùn)練點(diǎn):進(jìn)一步培養(yǎng)學(xué)生化實(shí)際問(wèn)題為數(shù)學(xué)問(wèn)題的能力和分析問(wèn)題解決問(wèn)題的能力,培養(yǎng)用數(shù)學(xué)的意識(shí)。
二、教學(xué)重點(diǎn)、難點(diǎn)
1.教學(xué)重點(diǎn):會(huì)用列一元二次方程的方法解有關(guān)面積、體積方面的應(yīng)用題。
2.教學(xué)難點(diǎn) :找等量關(guān)系。列一元二次方程解應(yīng)用題時(shí),應(yīng)注意是方程的解,但不一定符合題意,因此求解后一定要檢驗(yàn),以確定適合題意的解。例如線段的長(zhǎng)度不為負(fù)值,人的個(gè)數(shù)不能為分?jǐn)?shù)等。
三、教學(xué)步驟
(一)明確目標(biāo)。
(二)整體感知
(三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
1.復(fù)習(xí)提問(wèn)
(1)列方程解應(yīng)用題的步驟?
(2)長(zhǎng)方形的周長(zhǎng)、面積?長(zhǎng)方體的體積?
2.例1 現(xiàn)有長(zhǎng)方形紙片一張,長(zhǎng)19cm,寬15cm,需要剪去邊長(zhǎng)是多少的小正方形才能做成底面積為77cm2的無(wú)蓋長(zhǎng)方體型的紙盒?
解:設(shè)需要剪去的小正方形邊長(zhǎng)為xcm,則盒底面長(zhǎng)方形的長(zhǎng)為(19-2x)cm,寬為(15-2x)cm,
據(jù)題意:(19-2x)(15-2x)=77.
整理后,得x2-17x+52=0,
解得x1=4,x2=13.
∴ 當(dāng)x=13時(shí),15-2x=-11(不合題意,舍去。)
答:截取的小正方形邊長(zhǎng)應(yīng)為4cm,可制成符合要求的無(wú)蓋盒子。
練習(xí)1.章節(jié)前引例。
學(xué)生筆答、板書(shū)、評(píng)價(jià)。
練習(xí)2.教材P.42中4.
學(xué)生筆答、板書(shū)、評(píng)價(jià)。
注意:全面積=各部分面積之和。
剩余面積=原面積-截取面積。
例2 要做一個(gè)容積為750cm3,高是6cm,底面的長(zhǎng)比寬多5cm的長(zhǎng)方形匣子,底面的長(zhǎng)及寬應(yīng)該各是多少(精確到0.1cm)?
分析:底面的長(zhǎng)和寬均可用含未知數(shù)的代數(shù)式表示,則長(zhǎng)×寬×高=體積,這樣便可得到含有未知數(shù)的等式——方程。
解:長(zhǎng)方體底面的寬為xcm,則長(zhǎng)為(x+5)cm,
解:長(zhǎng)方體底面的寬為xcm,則長(zhǎng)為(x+5)cm,
據(jù)題意,6x(x+5)=750,
整理后,得x2+5x-125=0.
解這個(gè)方程x1=9.0,x2=-14.0(不合題意,舍去).
當(dāng)x=9.0時(shí),x+17=26.0,x+12=21.0.
答:可以選用寬為21cm,長(zhǎng)為26cm的長(zhǎng)方形鐵皮。
教師引導(dǎo),學(xué)生板書(shū),筆答,評(píng)價(jià)。
(四)總結(jié)、擴(kuò)展
1.有關(guān)面積和體積的應(yīng)用題均可借助圖示加以分析,便于理解題意,搞清已知量與未知量的相互關(guān)系。
2.要深刻理解題意中的已知條件,正確決定一元二次方程的取舍問(wèn)題,例如線段的長(zhǎng)不能為負(fù)。
3.進(jìn)一步體會(huì)數(shù)字在實(shí)踐中的應(yīng)用,培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
四、布置作業(yè)
教材P.42中A3、6、7.
教材P.41中3.4
五、板書(shū)設(shè)計(jì)
12.6 一元二次方程的應(yīng)用(二)
例1.略
例2.略
解:設(shè)……… 解:…………
………… …………
數(shù)學(xué)《一元二次方程》教案設(shè)計(jì) 篇六
教學(xué)目標(biāo)
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,會(huì)把一元二次方程化成一般形式。
3.通過(guò)本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辨證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)和難點(diǎn):
重點(diǎn):一元二次方程的概念和它的一般形式。
難點(diǎn):對(duì)一元二次方程的一般形式的正確理解及其各項(xiàng)系數(shù)的確定。
教學(xué)建議:
1.教材分析:
1)知識(shí)結(jié)構(gòu):本小節(jié)首先通過(guò)實(shí)例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項(xiàng)的名稱(chēng)。
2)重點(diǎn)、難點(diǎn)分析
理解一元二次方程的定義:
是一元二次方程的重要組成部分。方程,只有當(dāng)時(shí),才叫做一元二次方程。如果且,它就是一元二次方程了。解題時(shí)遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)一元二次方程的條件是確定的,如方程( ),把它化成一般形式為,由于,所以,符合一元二次方程的定義。
(2)條件是用“關(guān)于的一元二次方程”這樣的語(yǔ)句表述的,那么它就隱含了二次項(xiàng)系數(shù)不為零的條件。如“關(guān)于的一元二次方程”,這時(shí)題中隱含了的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的項(xiàng),且出現(xiàn)“關(guān)于的方程”這樣的語(yǔ)句,就要對(duì)方程中的字母系數(shù)進(jìn)行討論。如:“關(guān)于的方程”,這就有兩種可能,當(dāng)時(shí),它是一元一次方程;當(dāng)時(shí),它是一元二次方程,解題時(shí)就會(huì)有不同的結(jié)果。
本文由用戶(hù)liao分享,如有侵權(quán)請(qǐng)聯(lián)系。如若轉(zhuǎn)載,請(qǐng)注明出處:http://m.qingqu1.cn/24901.html