正在播放一区二区_日本不卡视频_成人福利视频网站_中国av在线免费观看_亚洲小视频在线观看_久久人爽爽人爽爽

初中數學公式法解一元二次方程教案 初中數學教案:用公式解一元二次方程(五)【優秀4篇】

初中數學教案:用公式解一元二次方程(五)【優秀4篇】

元二次方程的應用 篇一

一、素質教育目標

(一)知識教學點:使學生會用列一元二次方程的方法解決有關增長率問題。

(二)能力訓練點:進一步培養學生化實際問題為數學問題的能力和分析問題解決問題的能力,培養學生用數學的意識。

二、教學重點、難點

1.教學重點:學會用列方程的方法解決有關增長率問題。

2.教學難點 :有關增長率之間的數量關系。下列詞語的異同;增長,增長了,增長到;擴大,擴大到,擴大了。

三、教學步驟

(一)明確目標。

(二)整體感知

(三)重點、難點的學習和目標完成過程

1.復習提問

(1)原產量+增產量=實際產量。

(2)單位時間增產量=原產量×增長率。

(3)實際產量=原產量×(1+增長率).

2.例1  某鋼鐵廠去年一月份某種鋼的產量為5000噸,三月份上升到7200噸,這兩個月平均每月增長的百分率是多少?

分析:設平均每月的增長率為x.

則2月份的產量是5000+5000x=5000(1+x)(噸).

3月份的產量是[5000(1+x)+5000(1+x)x]

=5000(1+x)2(噸).

解:設平均每月的增長率為x,據題意得:

5000(1+x)2=7200

(1+x)2=1.44

1+x=±1.2.

x1=0.2,x2=-2.2(不合題意,舍去).

取x=0.2=20%.

教師引導,點撥、板書,學生回答。

注意以下幾個問題:

(1)為計算簡便、直接求得,可以直接設增長的百分率為x.

(2)認真審題,弄清基數,增長了,增長到等詞語的關系。

(3)用直接開平方法做簡單,不要將括號打開。

練習1.教材P.42中5.

學生分析題意,板書,筆答,評價。

練習2.若設每年平均增長的百分數為x,分別列出下面幾個問題的方程。

(1)某工廠用二年時間把總產值增加到原來的b倍,求每年平均增長的百分率。

(1+x)2=b(把原來的總產值看作是1.)

(2)某工廠用兩年時間把總產值由a萬元增加到b萬元,求每年平均增長的百分數。

(a(1+x)2=b)

(3)某工廠用兩年時間把總產值增加了原來的b倍,求每年增長的百分數。

((1+x)2=b+1把原來的總產值看作是1.)

以上學生回答,教師點撥。引導學生總結下面的規律:

設某產量原來的產值是a,平均每次增長的百分率為x,則增長一次后的產值為a(1+x),增長兩次后的產值為a(1+x)2 ,…………增長n次后的產值為S=a(1+x)n.

規律的得出,使學生對此類問題能居高臨下,同時培養學生的探索精神和創造能力。

例2  某產品原來每件600元,由于連續兩次降價,現價為384元,如果兩個降價的百分數相同,求每次降價百分之幾?

分析:設每次降價為x.

第一次降價后,每件為600-600x=600(1-x)(元).

第二次降價后,每件為600(1-x)-600(1-x)•x

=600(1-x)2(元).

解:設每次降價為x,據題意得

600(1-x)2=384.

答:平均每次降價為20%.

教師引導學生分析完畢,學生板書,筆答,評價,對比,總結。

引導學生對比“增長”、“下降”的區別。如果設平均每次增長或下降為x,則產值a經過兩次增長或下降到b,可列式為a(1+x)2=b(或a(1-x)2=b).

(四)總結、擴展

1.善于將實際問題轉化為數學問題,嚴格審題,弄清各數據相互關系,正確布列方程。培養學生用數學的意識以及滲透轉化和方程的思想方法。

2.在解方程時,注意巧算;注意方程兩根的取舍問題。

3.我們只學習一元一次方程,一元二次方程的解法,所以只求到兩年的增長率。3年、4年……,n年,應該說按照規律我們可以列出方程,隨著知識的增加,我們也將會解這些方程。

四、布置作業

教材P.42中A8

五、板書設計

12.6  一元二次方程應用(三)

1.數量關系: 例1…… 例2……

(1)原產量+增產量=實際產量 分析:…… 分析……

(2)單位時間增產量=原產量×增長率 解…… 解……

(3)實際產量=原產量(1+增長率)

2.最后產值、基數、平均增長率、時間

的基本關系:

M=m(1+x)n  n為時間

M為最后產量,m為基數,x為平均增長率

《一元二次方程》的優秀教案 篇二

教學目標:

知識與技能目標:

經歷探索一元二次方程概念的過程,理解一元二次方程中的二次項、一次項、常數項;了解一元二次方程的一般形式,并會將一元二次方程轉化成一般形式。

過程與方法目標:

經歷抽象一元二次方程的概念的過程,進一步體會方程是刻畫現實世界的一個有效數學模型;在探索過程中培養和發展學生學習數學的`主動性,提高數學的應用能力。

情感態度與價值觀目標:

培養學生主動參與、合作交流的意識;經歷獨立克服困難和運用知識解決問題的成功體驗,提高學生學習數學的信心。

教學重點:

理解一元二次方程的概念及其形式。

教學難點:

一元二次方程概念的探索

教學過程

一、情境引入

今天我們學習一元二次方程,溫故而知新,我們都學過什么方程?(一元一次方程,分式方程,方程組)同桌兩人說說學過這些方程的定義都是什么。你覺得學過這些方程難嗎?只要你拿出你的學習熱情來,就會感覺這節課的內容,也很簡單。請你打開課本39頁,從39頁到40頁議一議以上的內容,希望你準確而又迅速的在課本上列出方程,不用求解。列出方程后組內對一下答案,如有錯誤,出錯的原因。(3’)

二、探索新知

列方程正確率百分之百的請舉手。祝賀你們,沒舉手的同學加油!(列對的同學多就問,否則問現在會列這些方程的請舉手)

請你將上述三個方程,化簡成等號右邊等于0的形式。完成后組內對一下答案,先完成的小組把你們的成果寫在黑板上,其余組跟黑板上的答案對一下,有不同意見的把你們組的答案也寫上去。(黑板上的答案對嗎?如有沒約分的,問哪個更好?)

觀察、思考剛才這3個方程2×2-13x+11=0,×2-8x-20=0,×2+12x-15=0,以及又加入的這兩個方程x2+3x=0,4×2-5=0是一元一次方程嗎?你猜這些方程叫什么方程?對,這樣的方程就是我們今天學習的一元二次方程。

請大家先思考然后小組討論導學案中探究一中的問題2到6,組長找好本題發言人,最后全班交流你們組對問題5和6的看法。

2、以上方程與一元一次方程有什么相同與不同之處?

3、你能說說什么樣的方程是一元二次方程嗎?

4、如果我們借助字母系數來表示,那么以上方程能都化成一個方程————————–,用字母表示系數時,要注意什么嗎?

5、你們組歸納的一元二次方程的概念與課本40頁的定義有區別嗎?誰的更好?好在哪?

6、你認為一元二次方程的概念中重點要強調的是什么?為什么?

請3組同學交流一下你們討論的問題5、6的結果。老師根據學生的回答,有針對性的提出為什么這樣想?你的理由是什么?以強調a≠0。并板書(1)含一個未知數(2)2次(3)整式方程,一般形式ax2+bx+c=0(a、b、c、為常數a≠0)有沒有要補充或者要發表不同看法的小組?

請你搶答問題7。

7、判斷下列方程是不是一元二次方程,若不是請說明理由。

同桌兩人能舉出幾個一元二次方程的例子嗎?

探索二

先自學課本40最后一段話,然后同桌兩人說出黑板上3個方程的二次項、二次項系數、一次項、一次項系數、常數項。

找一元二次方程各項及其各項系數時,需要注意什么嗎?(先要是一般形式,系數帶符號)請你完成探究二中問題1,請2組、4組選派一名同學分別上黑板(10、(2)兩題。完成后對照課本41頁例1自己檢查對錯,有困難的同學找組長和我。

1、判斷下列方程是不是關于x的一元二次方程,如果是,寫出它的二次項系數、一次項系數和常數項。

(1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)

問題3做對了的同學請舉手?祝賀你們。出錯的同學能不能把你的寶貴經驗告訴我們,我們下次也好注意一下,別再出錯?請你說說,謝謝你對我們的提醒。

三、鞏固練習

請看問題2,

2、已知關于x的方程(1)k為何值時,此方程為一元二次方程?(2)k為何值時,此方程為一元一次方程?誰能回答?為什么這樣想?

四、課堂:

先小組內說出本節課你的收獲,然后全班交流你們組的收獲。大家看看哪個小組的收獲多。

五、自我檢測:

看看我們的收獲是不是真的

碩果累累,請你完成自我檢測給你5分鐘時間,做完的給我和組長檢查。老師和小組長當堂批改

1、三個連續整數兩兩相乘,所得積的和為242,這三個數分別是多少?

根據題意,列出方程為————————————。

2、把下列方程化為一元二次方程的形式,并寫出它的二次項系數、常數項:

方程

一般形式

二次項系數

常數項

3×2=5x-1

(x+2)(x-1)=6

3、關于x的方程(k-2)x2+2(k+9)x+2k-1=0

(1)k為何值時,是一元二次方程?k————–是一元二次方程。

(2)k為何值時,是一元一次方程?k————-是一元一次方程。

六、小組

請小組長本小組今天大家的表現。

七、作業

課本42頁1(2),2(1)(2)(3)

能力挑戰:

已知關于x的方程(k2-1)x2+(k+1)x-2=0

(1)k為何值時,此方程為一元二次方程?并寫出該一元二次方程的二次項系數、一次項系數、常數項。(2)k為何值時,此方程為一元一次方程?

板書設計:一元二次方程

(1)3x(x+2)=4(x-1)+7(2)(2x+3)2=(x+1)(4x-1)

2×2-13x+11=0(1)含一個未知數(2)2次

x2-8x-20=0(3)整式方程

x2+12x-15=0一般形式ax2+bx+c=0(a、b、c、為常數a≠0)

二次項一次項常數項

二次項系數一次項系數常數項系數

參加區優質課評比反思:

這次有幸參加我區優質課評比,感受頗多。

一、對三分之一課堂模式有了更深的理解。數學課的三分之一模式不是簡單的把課堂分成三大塊,也不是自主探索、小組合作、教師引導,一定是嚴格的都是15分鐘,這要根據課程的內容,靈活的把握。我講的《一元二次方程》這一節中,簡單問題我就讓大家自主探索,對于難度大的問題,自主探索后先小組合作,最后師生一起進行歸納。

二、臺上一分鐘,臺下十年功。通過參加這次活動,我想,我在今后的課堂教學中,就要用優質課的進行教學,如果平時的授課方式和優質課的方式差別很大的話,雖然是經過加工了的課,但最后一定會帶有很多平時上課的影子,很多不規范的方面還是難以改正的。

三、集體的智慧很重要。一個人的力量是有限的,但集體的力量是無限的。我很感謝我們數學組的各位老師對我的大力支持,他們一遍一遍的給提出修改建議,一次一次的跟我去聽課,尤其是李老師、戰老師、林老師,她們給了我教學理念上的很多建議,讓我的教學理念有了很大的提升。

元二次方程的相關教案 篇三

教學內容:12.1 用公式解一元二次方程(一)

教學目標:

知識與技能目標:使學生了解一元二次方程及整式方程的意義;掌握一元二次方程的一般形式,正確識別二次項系數、一次項系數及常數項.

過程與方法目標:通過一元二次方程的引入,培養學生分析問題和解決問題的能力;通過一元二次方程概念的學習,培養學生對概念理解的完整性和深刻性.

情感與態度目標:由知識來源于實際,樹立轉化的思想,由設未知數列方程向學生滲透方程的思想方法,由此培養學生用數學的意識.。

教學重、難點與關鍵:

重點:一元二次方程的意義及一般形式.

難點:正確識別一般式中的“項”及“系數”。

教學程序設計:

1.用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個角上截去四個相同的小正方形,然后把四邊折起來,就成為一個無蓋的長方體盒子,演示完畢,讓學生拿出事先準備好的長方形紙片和剪刀,實際操作一下剛才演示的過程.學生的實際操作,為解決下面的問題奠定基礎,同時培養學生手、腦、眼并用的能力.

2.現有一塊長80cm,寬60cm的薄鋼片,在每個角上截去四個相同的小正方形,然后做成底面積為1500cm2的無蓋的長方體盒子,那么應該怎樣求出截去的小正方形的邊長?

教師啟發學生設未知數、列方程,經整理得到方程x2-70x+825=0,此方程不會解,說明所學知識不夠用,需要學習新的知識,學了本章的知識,就可以解這個方程,從而解決上述問題.

板書:“第十二章一元二次方程”.教師恰當的語言,激發學生的求知欲和學習興趣.

學生看投影并思考問題

通過章前引例和節前引例,使學生真正認識到知識來源于實際,并且又為實際服務,學習了一元二次方程的知識,可以解決許多實際問題,真正體會學習數學的意義;產生用數學的意識,調動學生積極主動參與數學活動中.同時讓學生感到一元二次方程的解法在本章中處于非常重要的地位.

探究新知1

1.復習提問

(1)什么叫做方程?曾學過哪些方程?

(2)什么叫做一元一次方程?“元”和“次”的含義?

(3)什么叫做分式方程?

2.引例:剪一塊面積為150cm2的長方形鐵片使它的長比寬多5cm,這塊鐵片應怎樣剪?

引導,啟發學生設未知數列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,得到整式方程和一元二次方程的`概念.

整式方程:方程的兩邊都是關于未知數的整式,這樣的方程稱為整式方程.

一元二次方程:只含有一個未知數,且未知數的最高次數是2,這樣的整式方程叫做一元二次方程.

3.練習:指出下列方程,哪些是一元二次方程?

(1)x(5x-2)=x(x+1)+4×2;

(2)7×2+6=2x(3x+1);

(3)

(4)6×2=x;

(5)2×2=5y;

(6)-x2=0

4.任何一個一元二次方程都可以化為一個固定的形式,這個形式就是一元二次方程的一般形式.

一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2稱二次項,bx稱一次項,c稱常數項,a稱二次項系數,b稱一次項系數.

一般式中的“a≠0”為什么?如果a=0,則ax2+bx+c=0就不是一元二次方程,由此加深對一元二次方程的概念的理解.

5.例1 把方程3x(x-1)=2(x+1)+8化成一般形式,并寫出二次項系數,一次項系數及常數項?

教師邊提問邊引導,板書并規范步驟,深刻理解一元二次方程及一元二次方程的一般形式.

討論后回答

學生設未知數列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,

獨立完成

加深理解

學生試解

問題的提出及解決,為深刻理解一元二次方程的概念做好鋪墊

反饋訓練應用提高

練習1:教材P.5中1,2.

練習2:下列關于x的方程是否是一元二次方程?為什么?若是一元二次方程,請分別指出其二次項系數、一次項系數、常數項:.

(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.

教師提問及恰當的引導,對學生回答給出評價,通過此組練習,加強對概念的理解和深化

要求多數學生在練習本上筆答,部分學生板書,師生評價.題目答案不唯一,最好二次項系數化為正數.

小結提高

(四)總結、擴展

引導學生從下面三方面進行小結.從方法上學到了什么方法?從知識內容上學到了什么內容?分清楚概念的區別和聯系?

1.將實際問題用設未知數列方程轉化為數學問題,體會知識來源于實際以及轉化為方程的思想方法.

2.整式方程概念、一元二次方程的概念以及它的一般形式,二次項系數、一次項系數及常數項.歸納所學過的整式方程.

3.一元二次方程的意義與一般形式ax2+bx+c=0(a≠0)的區別和聯系.強調“a≠0”這個條件有長遠的重要意義.

學生討論回答

布置作業

1.教材P.6 練習2.

2.思考題:

1)能不能說“關于x的整式方程中,含有x2項的方程叫做一元二次方程?”

2)試說出一元三次方程,一元四次方程的定義及一般形式(學有余力的學生思考).

《一元二次方程》的優秀教案 篇四

教學目標

1. 了解整式方程和一元二次方程的概念;

2. 知道一元二次方程的一般形式,會把一元二次方程化成一般形式,一元二次方程。

3. 通過本節課引入的教學,初步培養學生的數學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發學生學習數學的興趣。

教學重點和難點

重點:一元二次方程的概念和它的一般形式。

難點:對一元二次方程的一般形式的正確理解及其各項系數的確定。

教學建議:

1. 教材分析:

1)知識結構:本小節首先通過實例引出一元二次方程的概念,介紹了一元二次方程的一般形式以及一元二次方程中各項的名稱。

2)重點、難點分析

理解一元二次方程的定義:

是一元二次方程 的重要組成部分。方程 ,只有當 時,才叫做一元二次方程。如果 且 ,它就是一元二次方程了。解題時遇到字母系數的方程可能出現以下情況:

(1)一元二次方程的條件是確定的,如方程 ( ),把它化成一般形式為 ,由于 ,所以 ,符合一元二次方程的定義。

(2)條件是用“關于 的一元二次方程”這樣的語句表述的,那么它就隱含了二次項系數不為零的條件。如“關于 的一元二次方程 ”,這時題中隱含了 的條件,這在解題中是不能忽略的。

(3)方程中含有字母系數的 項,且出現“關于 的方程”這樣的語句,就要對方程中的字母系數進行討論。如:“關于 的方程 ”,這就有兩種可能,當 時,它是一元一次方程 ;當 時,它是一元二次方程,解題時就會有不同的結果。

教學目的

1、了解整式方程和一元二次方程的概念;

2、知道一元二次方程的一般形式,會把一元二次方程化成一般形式。

3、通過本節課引入的教學,初步培養學生的數學來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發學生學習數學的興趣。

教學難點和難點:重點:

1.一元二次方程的有關概念

2.會把一元二次方程化成一般形式

難點: 一元二次方程的含義。

教學過程設計

一、引入新課

引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應該怎樣剪?

分析:1.要解決這個問題,就要求出鐵片的長和寬。

2、這個問題用什么數學方法解決?(間接計算即列方程解應用題。

3.讓學生自己列出方程 ( x(x十5)=150 )

深入引導:方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?

二、新課

1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數研究的主要對象是方程。這部分內容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程——–一元一二次方程(板書課題)

2.什么是—元二次方程呢?現在我們來觀察上面這個方程:它的左右兩邊都是關于未知數的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數的最高次數是幾。如果方程未知數的最高次數是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)

3.強化一元二次方程的概念

下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?

(1)3x十2=5x—3:

(2)x2=4

(3)(x十3)(3x·4)=(x十2)2;

(4)(x—1)(x—2)=x2十8

從以上4例讓學生明白判斷一個方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數的最高次數是否是2。

4、 一元二次方程概念的延伸

提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?

引導學生回顧一元二次方程的定義,分析一元二次方程項的情況,啟發學生運用字母,找到一元二次方程的一般形式

ax2+bx+c=0 (a≠0)

1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。

2).講解方程中ax2、bx、c各項的名稱及a、b的系數名稱.

3).強調:一元二次方程的一般形式中“=”的左邊最多三項、其中一次項、常數項可以不出現、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。

強化概念(課本P6)

1.說出下列一元二次方程的二次項系數、一次項系數、常數項:

(1)x2十3x十2=O (2)x2—3x十4=0; (3)3×2-5=0

(4)4×2十3x—2=0; (5)3×2—5=0; (6)6×2—x=0。

2、把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數、一次項系數、常數項:

(1)6×2=3-7x; (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2

課堂小節

(1)本節課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數的最高次數為2,這樣的整式方程叫做一元一二次方程);

(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項、其中二次項、常數項可以不出現、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;

(3)要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數項:二次項系數、一次項系數.

課外作業:略

它山之石可以攻玉,以上就是我為大家整理的4篇《初中數學教案:用公式解一元二次方程(五)》,希望對您有一些參考價值。

本文由用戶indos分享,如有侵權請聯系。如若轉載,請注明出處:http://m.qingqu1.cn/21997.html

(0)

相關推薦

發表回復

您的郵箱地址不會被公開。 必填項已用 * 標注

主站蜘蛛池模板: 老司机午夜免费精品视频 | 欧美精品一区二区三区在线播放 | 午夜小电影 | 亚洲国产精品免费在线观看 | 国产欧美精品一区二区三区四区 | 免费av在线电影 | 国产精品免费精品自在线观看 | 成人午夜电影网 | 亚洲天天在线观看 | 无毒黄网 | 四虎最新紧急更新地址 | 午夜激情影院 | 国产一区二区三区四区 | 久久精品91久久久久久再现 | 国产精品视频播放 | 日韩精品一区二区三区中文在线 | 亚洲欧美在线免费 | 欧美日韩一区二区三区在线观看 | 99精品视频在线 | 91精品国产成人 | 亚洲欧洲精品视频在线观看 | 日韩有码视频在线 | 国产精品久久久久久 | 精品国产一区二区国模嫣然 | 成人亚洲精品 | 国产日韩欧美在线观看 | 国产精品成人3p一区二区三区 | 亚洲精品欧美一区二区三区 | 在线视频亚洲 | 免费骚视频 | 中文字幕在线观看av | 亚洲成人一区二区三区 | 性色网 | 国产一二在线 | 青青国产在线视频 | 国产一区二区三区四区二区 | 国产精品成人国产乱一区 | 在线a视频| 成人欧美一区二区三区在线播放 | 激情久久久| 精品视频在线免费观看 |