高中數學必修一教案 篇一
一。復習引入
提問:
以A(a,b)為圓心,半徑為r的圓的標準方程是什么?
討論并歸納回答。
復習鞏固加強記憶。
二。新課講授
1.思考:
我們先來判斷兩個具體的方程是否表示圓?
2.教師提問:
(1).是不是任何一個形如 的方程表示的曲線都是圓?
(2).如果不是那么在什么條件下表示圓?(提示:與圓的標準方程進行比較。)
綜上所述,方程
表示的曲線不一定是圓,只有當 時,它表示的曲線才是圓, 我們把方程 ( )稱為圓的一般方程
與一般的二元二次方程 比較
我們來看圓的一般方程的特點:(啟發學生歸納)
學生根據已有的知識,經過配方,把方程化成標準形式,然后加以判斷。
1.
2.
(讓學生相互討論后,由學生總結)
配方得總結
當 時,此方程表示以(- ,- )為圓 心, 為半徑的圓;
當 時,此方程只有實數解 , ,即只表示一個點(- ,- );
當 時,此方程沒有實數解,因而它不表示任何圖形
①x2和y2的系數相同,不等于0.
②沒有xy這樣的二次項
使新知識建立在學生已有的知識上
設置問題:提出疑問,誘導學生主動思考,主動探究,合作交流使學生在積極的學習中解決問題,提高學生的教學思維能力,實現素質教育的目標,同時也培養了學生的情感、態度與價值觀。
提高學生分析問題和解決問題的能力。
圓的標準方程
圓的一般方程
方程
圓心
半徑
r
優點
幾何特征明顯
突出方程形式上的特點
問題:圓的標準方程與圓的一般方程各有什么特點?
采用類比法加深在研究問題中由簡單到復雜,由特殊到一般的化歸思想的認識。
練習1.判斷下列方程是否表示圓? 如果是 ,請求出圓的圓心及半徑。
三。例題講解:
例1:求過三點A(0,0),B(1,1),C(4,2)的圓的方程,并求這個圓的半徑長和圓心坐標。
分析:已知曲線類型,應采用待定系數法
使用待定系數法的圓的方程的一般步驟:
1.根據題意,選擇標準方程或一般方程;
2.根據條件列出關于a、b、r或D、E、F的方程組;
3.解出a、b、r或D、E、F,代入標準方程或一般方程。
例2.已知線段 的端點 的坐標是 ,端點 在圓 上運動,求線段 中點 的坐標 中 滿足的關系?并說明該關系表示什么曲線?
練習2.求圓心在直線 上,并且經過原點和點(3,-1)的圓的方程
課堂小結
(1)任何一個圓的方程都可以寫成 的形式,但是方程 的曲線不一定是圓;當 時,方程 稱為圓的一般方程。
(2)圓的一般方程與圓的標準方程可以互相轉化;熟練應用配方法求出圓心坐標和半徑。
(3)用待定系數法求圓的方程時需要靈活選用方程形式。
想一想:可否先求圓心和半徑,再得出圓的方程?
(提示學生結合圖形,圓的弦的中垂線的交點為圓心 ,圓心到圓上一點的距離為半徑)
加強待定系數法的應用
培養學生數形結合思想,進一步加強學生用代數方法研究幾何問題的能力,體現了本節的知識與技能目標。
練習:P123:1、2、3
生:練習
4.1.2 圓的一般方程
課時設計 課堂實錄
4.1.2 圓的一般方程
1第一學時 教學活動 活動1【活動】活動
四。教學過程
教學環節
教師活動
學生活動
設計意圖
復習圓的定義及圓的標準方程特征
創設問題
設疑
類比
教師引導
高中數學教案必修一 高中數學教案詳案 篇二
1。通過生活中優化問題的學習,體會導數在解決實際問題中的作用,促進
學生全面認識數學的科學價值、應用價值和文化價值。
2。通過實際問題的研究,促進學生分析問題、解決問題以及數學建模能力的提高。
教學重點:
如何建立實際問題的目標函數是教學的重點與難點。
教學過程:
一、問題情境
問題1把長為60cm的鐵絲圍成矩形,長寬各為多少時面積最大?
問題2把長為100cm的鐵絲分成兩段,各圍成正方形,怎樣分法,能使兩個正方形面積之各最小?
問題3做一個容積為256l的方底無蓋水箱,它的高為多少時材料最省?
二、新課引入
導數在實際生活中有著廣泛的應用,利用導數求最值的方法,可以求出實際生活中的某些最值問題。
1。幾何方面的應用(面積和體積等的最值)。
2。物理方面的應用(功和功率等最值)。
3。經濟學方面的應用(利潤方面最值)。
三、知識建構
例1在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無蓋的方底箱子,箱底的邊長是多少時,箱底的容積最大?最大容積是多少?
說明1解應用題一般有四個要點步驟:設——列——解——答。
說明2用導數法求函數的最值,與求函數極值方法類似,加一步與幾個極
值及端點值比較即可。
例2圓柱形金屬飲料罐的容積一定時,它的高與底與半徑應怎樣選取,才
能使所用的材料最省?
變式當圓柱形金屬飲料罐的表面積為定值s時,它的高與底面半徑應怎樣選取,才能使所用材料最省?
說明1這種在定義域內僅有一個極值的函數稱單峰函數。
說明2用導數法求單峰函數最值,可以對一般的求法加以簡化,其步驟為:
s1列:列出函數關系式。
s2求:求函數的導數。
s3述:說明函數在定義域內僅有一個極大(小)值,從而斷定為函數的最大(小)值,必要時作答。
例3在如圖所示的電路中,已知電源的內阻為,電動勢為。外電阻為
多大時,才能使電功率最大?最大電功率是多少?
說明求最值要注意驗證等號成立的條件,也就是說取得這樣的值時對應的自變量必須有解。
例4強度分別為a,b的兩個光源a,b,它們間的距離為d,試問:在連接這兩個光源的線段ab上,何處照度最小?試就a=8,b=1,d=3時回答上述問題(照度與光的強度成正比,與光源的距離的平方成反比)。
例5在經濟學中,生產單位產品的成本稱為成本函數,記為;出售單位產品的收益稱為收益函數,記為;稱為利潤函數,記為。
(1)設,生產多少單位產品時,邊際成本最低?
(2)設,產品的單價,怎樣的定價可使利潤最大?
四、課堂練習
1。將正數a分成兩部分,使其立方和為最小,這兩部分應分成____和___。
2。在半徑為r的圓內,作內接等腰三角形,當底邊上高為 時,它的面積最大。
3。有一邊長分別為8與5的長方形,在各角剪去相同的小正方形,把四邊折起做成一個無蓋小盒,要使紙盒的容積最大,問剪去的小正方形邊長應為多少?
4。一條水渠,斷面為等腰梯形,如圖所示,在確定斷面尺寸時,希望在斷面abcd的面積為定值s時,使得濕周l=ab+bc+cd最小,這樣可使水流阻力小,滲透少,求此時的高h和下底邊長b。
五、回顧反思
(1)解有關函數最大值、最小值的實際問題,需要分析問題中各個變量之間的關系,找出適當的函數關系式,并確定函數的定義區間;所得結果要符合問題的實際意義。
(2)根據問題的實際意義來判斷函數最值時,如果函數在此區間上只有一個極值點,那么這個極值就是所求最值,不必再與端點值比較。
(3)相當多有關最值的實際問題用導數方法解決較簡單。
六、課外作業
課本第38頁第1,2,3,4題。
高中數學必修一教案 篇三
重點難點教學:
1.正確理解映射的概念;
2.函數相等的兩個條件;
3.求函數的定義域和值域。
一。教學過程:
1. 使學生熟練掌握函數的概念和映射的定義;
2. 使學生能夠根據已知條件求出函數的定義域和值域; 3. 使學生掌握函數的三種表示方法。
二。教學內容:
1.函數的定義
設A、B是兩個非空的數集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數x,在集合B中都有唯一確定的數()fx和它對應,那么稱:fAB為從集合A到集合B的一個函數(function),記作:
(),yfxxA
其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數值,函數值的集合{()|}fxxA叫值域(range)。顯然,值域是集合B的子集。
注意:
① “y=f(x)”是函數符號,可以用任意的字母表示,如“y=g(x)”;
②函數符號“y=f(x)”中的f(x)表示與x對應的函數值,一個數,而不是f乘x.
2.構成函數的三要素 定義域、對應關系和值域。
3.映射的定義
設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意
一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從 集合A到集合B的一個映射。
4. 區間及寫法:
設a、b是兩個實數,且a
(1) 滿足不等式axb的實數x的集合叫做閉區間,表示為[a,b];
(2) 滿足不等式axb的實數x的集合叫做開區間,表示為(a,b);
5.函數的三種表示方法 ①解析法 ②列表法 ③圖像法
高中數學必修一教案 篇四
一、教學目標
1、知識與技能
(1)理解對數的概念,了解對數與指數的關系;
(2)能夠進行指數式與對數式的互化;
(3)理解對數的性質,掌握以上知識并培養類比、分析、歸納能力;
2、過程與方法
3、情感態度與價值觀
(1)通過本節的學習體驗數學的嚴謹性,培養細心觀察、認真分析
分析、嚴謹認真的良好思維習慣和不斷探求新知識的精神;
(2)感知從具體到抽象、從特殊到一般、從感性到理性認知過程;
(3)體驗數學的科學功能、符號功能和工具功能,培養直覺觀察、
探索發現、科學論證的良好的數學思維品質、
二、教學重點、難點
教學重點
(1)對數的定義;
(2)指數式與對數式的互化;
教學難點
(1)對數概念的理解;
(2)對數性質的理解;
三、教學過程:
四、歸納總結:
1、對數的概念
一般地,如果函數ax=n(a0且a≠1)那么數x叫做以a為底n的對數,記作x=logan,其中a叫做對數的底數,n叫做真數。
2、對數與指數的互化
ab=n?logan=b
3、對數的基本性質
負數和零沒有對數;loga1=0;logaa=1對數恒等式:alogan=n;logaa=nn
五、課后作業
課后練習1、2、3、4
六、板書設計
上面內容就是我為您整理出來的4篇《高中數學必修一教案》,希望對您有一些參考價值,更多范文樣本、模板格式盡在我。
本文由用戶楓葉分享,如有侵權請聯系。如若轉載,請注明出處:http://m.qingqu1.cn/22104.html